Computer Science Guidance

Jianhui Zhang,

Ph.D., Associate Prof.

College of Computer Science and
Technology, Hangzhou Dianzi Univ.

Email: jh_zhang@hdu.edu.cn

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.

Chapter 2:
Data Manipulation

Computer Science: An Overview
Twelfth Edition

by
J. Glenn Brookshear
Dennis Brylow

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.
PEARSON

2.1 Computer Architecture

2.2 Machine Language

2.3 Program Execution

2.4 Arithmetic/Logic Instructions

2.5 Communicating with Other Devices
2.6 Program Data Manipulation

2.7 Other Architectures

Copyright © 2015 Pearson Education, Inc.

2-3

Computer Architecture

» Central Processing Unit (CPU) or
processor

— Arithmetic/Logic unit versus Control unit
— Registers
» General purpose
» Special purpose
- Bus
» Motherboard

Acorn! @ Sun

Copyright © 2015 Pearson Education, Inc. 2.4

connected via a bus

Central processing unit

Arithmetic/logic

unit

Copyright © 2015 Pearson Education, Inc.

Main memory

2-5

John von Neumann Model

% Computer Architecture

4 sub-system: storage, arithmetic logic unit(ALU)
control unit, input/output unit

output
Y
VRtER
BRHEREF—>
|
|
ffffff = #‘t

TheeRR —> HEES -—> #HES

Copyright © 2015 Pearson Education, Inc.

~

J

[External
[Sforqge . Cludjng storage
interior , .
[storage] (peripheral equipment
connected with CPU
[Inppf]4.— through the adapters on
device \the ports
[Ou’rpu’r
4) device
CPU
_ y,

Copyright © 2015 Pearson Education, Inc.

Bus

Input]_[
[device adapter

_(How to connect
tHe8e assembly unit

Copyright © 2015 Pearson Education, Inc.

f Y
External
X s’rorloge)

2

adapter

interior
storage

Output]
dapte device

-
‘‘‘‘
———————

" External |
X s’ror?ge)
d There are many types of [| interior
BUSs adapter storage]
d Each BUS connects with one I

adapter o
Input H e}’[| Output]
[device aapt (chipsef) daif device

= Each adapter g N
connects with BUS CPU “CPU” and “interior
storage” are 2 exception
through slot / \. . they needs not
SOCkEt adapter and can connect
with bus directly
_ J

Copyright © 2015 Pearson Education, Inc.

r-

Power [] Main
CPU -
adapter

llllllllllllllllllllllllll

‘Conce-)
 ntrator

é N

Monitor

Ethernet
adapter

™ ~
Internal J : (— Monitor
storage : i (__adapter
/ _ |(Main board|! —=—
o __adapter

llllllllllllllllllllllllll

Key board]

4 &right © 2015 PeaLon Education, Jnc.

Q Sk (Bus)
> Al ¥ /2 28 (Front-Side Bus, FSB) [CPU&—>th 41]
> WAFE 2 (Memory Bus) [NfF€<> 0 4]

> EEEEAL [BRE>0 4]
e PCI-E, AGP

> HhERfEEA S g [HERLERCES . GG Rl € >0 7 4]
e SATA, IDE, SCSI
> RIE B A% 5L 25 (LPC)
e [BIOS<-=>ith 4]
o [HMIERLAY. WARERA . PIKEH <20 4]
> BAARZ [HEshidficss < >0 4]
e USB (Universal Serial Bus)
e PCI, ISA
> Wl 2E (Internal Bus) L6523 B3k)
Q #21: $HFE (Slot), fdiHi(Socket), ¥l (Connector/Port)
> CPUJAME/pE, WAFHE, PCI-E)ETY, ISAJHE
> BbRim I, fE#AE O, USB I
O 14 (Chipset)
» JuMrdi s (North Bridge): €—>CPU. A7, R

> FMFCH (South Bridge): € —>BIOS. H g A1 15 &3 fic %

d BIOS (Basic Input/Output System)

Copyright © 2015 Pearson Education, Inc.

P

L Hl

e

P

L Hl

i

o~

b b

= TRk

A)
1 M\

H

r

[

CPU

o

— \CPUIEM/EE

______ \

GIEG]

N EEERN EEEENN)y

"""""" MEERE B
N 77 = Bl iy a
(A ESCA L - -
USBIENL 2 . R
.. : ‘ﬁ‘ :
EHKIO P . = % :PCIE‘%
i \QTUTEEE A N -
AR T - ISAR &
RO IEAL 5% : ‘LPCa %
i REEE = = "
. R ARIERL 2 - -
fi\@gH N2 = CMOS = | BIOS
Rt ’ i_‘\I .'IIIIIIIIIIII:
— 2 Y

Copyright © 2015 Pearson Education 1

A _EAg

F0i0

L ¥y 1A

12

SATASMF ¥
(B | (IDEs D

BT ‘
(5%
A -
CPUA B IR

CPU X\ f 3 Jo

| cpuss

Copyright © 2015 Pearson Education, Inc.

| M@ |
| PCI-Edl

n&%%DJ

Copyright © 2015 Pearson Education, Inc.

= Internal
storage

Ug

CPU&other chips

< main / chipset / BUS >

l ~ Network
. card
External device |— Sound
A _card .-
SN

- WD e

Copyright © 2015 Pearson Education, Inc.

A program can be encoded as bit patterns
and stored in main memory. From there,
the CPU can then extract the instructions
and execute them. In turn, the program to
be executed can be altered easily.

Copyright © 2015 Pearson Education, Inc.

2-16

Machine instruction: An instruction (or
command) encoded as a bit pattern
recognizable by the CPU

Machine language: The set of all
instructions recognized by a machine

Copyright © 2015 Pearson Education, Inc.

2-17

Reduced Instruction Set Computing (RISC)
Few, simple, efficient, and fast instructions
Examples: PowerPC from Apple/IBM/Motorola

and ARM

Complex Instruction Set Computing (CISC)
Many, convenient, and powerful instructions
Example: Intel

Copyright © 2015 Pearson Education, Inc. 218

Data Transfer: copy data from one location
to another

Arithmetic/Logic: use existing bit patterns
to compute a new bit patterns

Control: direct the execution of the
program

Copyright © 2015 Pearson Education, Inc.

2-19

Figure 2.2 Adding values stored in
memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Copyright © 2015 Pearson Education, Inc. 2.20

Figure 2.3 Dividing values stored in
memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

Copyright © 2015 Pearson Education, Inc. 2.21

Figure 2.4 The architecture of the
machine described in Appendix C

Central processing unit

Registers
1o Program counter
11
[12 Instruction register
C1F

Copyright © 2015 Pearson Education, Inc.

Bus

Main memory

Address

00

01

02

03

b

Cell

J--0tdbi

2-22

Op-code: Specifies which operation to
execute

Operand: Gives more detailed information
about the operation

Interpretation of operand varies depending on
op-code

Copyright © 2015 Pearson Education, Inc. 2.23

Figure 2.5 The composition of an
instruction for the machine in
Appendix C

Op-code Operand
I I

| | | |
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

Copyright © 2015 Pearson Education, Inc. 2.24

Figure 2.6 Decoding the instruction
35A7

Instruction{ 3 5 A 7
/ | \I

Op-code 3 means

to store the contents This part of the operand identifies
of a register in a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Copyright © 2015 Pearson Education, Inc. 2.05

Figure 2.7 An encoded version of the

instructions in Figure 2.2

Encoded
instructions

Translation

156C

166D

5056

306E

Co00

Copyright © 2015 Pearson Education, Inc.

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two'’s
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

2-26

Controlled by two special-purpose
registers

Program counter: address of next instruction

Instruction register: current instruction
Machine Cycle

Fetch

Decode

Execute

Copyright © 2015 Pearson Education, Inc. 0.97

Figure 2.8 The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

-

2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.

Copyright © 2015 Pearson Education, Inc. 2.08

Figure 2.9 Decoding the instruction
B258

Instruction«[B 2 5 8
/ | \I

Op-code B means to

change the value of This part of the operand is the
the program counter address to be placed in the
if the contents of the program counter.

indicated register is
the same as that in
register 0.

This part of the operand identifies
the register to be compared to
register 0.

Copyright © 2015 Pearson Education, Inc. 2.29

Figure 2.10 The program from Figure 2.7

stored in main memory ready for execution

Program counter contains
address of first instructions.

Registers

o [

1]

CPU

Program counter
A0

Instruction register

Copyright © 2015 Pearson Education, Inc.

Bus

Main memory

Address Cells

A0
Al
A2
A3
A4
A5
A6
A7
A8
A9

15

()}

w
o

gBReREBEAY

—Program is
stored in
main memory
beginning at
address AO.

2-30

Figure 2.11 Performing the fetch step
of the machine cycle

CPU Main memory

Program counter

Address Cells

A0
Bus a0 [[25]
_ _ ——— Al I_
Instruction register
156C A2
A3

a. At the beginning of the fetch step the instruction starting at address A0 is
retrieved fromm memory and placed in the instruction register.

Copyright © 2015 Pearson Education, Inc. 2-31

Figure 2.11 Performing the fetch step

of the machine cycle (continued)

CPU

Program counter

Instruction register
156C

b. Then the program counter is incremented so that it points to the next instruction.

Copyright © 2015 Pearson Education, Inc.

Bus

Main memory

Address

AQ

Al

A2

A3

Cells

1L5)

6

2-32

Logic: AND, OR, XOR

Masking
Rotate and Shift: circular shift, logical shift,
arithmetic shift

Arithmetic: add, subtract, multiply, divide

Precise action depends on how the values are
encoded (two’s complement versus floating-

point).

Copyright © 2015 Pearson Education, Inc. 2.33

Figure 2.12 Rotating the bit pattern
65 (hexadecimal) one bit to the right

The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and

is placed in the hole at the
other end.

________ The final bit pattern

Copyright © 2015 Pearson Education, Inc.

2-34

Controller: An intermediary apparatus that
handles communication between the computer
and a device

Specialized controllers for each type of device

General purpose controllers (USB and
FireWire)

Port: The point at which a device connects to a
computer

Memory-mapped I/0: CPU communicates with
peripheral devices as though they were memory
cells

Copyright © 2015 Pearson Education, Inc. 2.35

Figure 2.13 Controllers attached to a
machine’s bus

CD drive Modem
Controller Controller
Bus .
CPU m l : Main

memory

Controller Controller

Monitor Disk drive

Copyright © 2015 Pearson Education, Inc. 2.36

Figure 2.14 A conceptual representation
of memory-mapped /O

Bus Mﬂln
memory

CPU

|

— Controller — Peripheral device

Copyright © 2015 Pearson Education, Inc. 2.37

Direct memory access (DMA): Main
memory access by a controller over the
bus

Von Neumann Bottleneck: Insufficient
bus speed impedes performance

Handshaking: The process of
coordinating the transfer of data between
components

Copyright © 2015 Pearson Education, Inc. 2.38

Parallel Communication: Several
communication paths transfer bits
simultaneously.

Serial Communication: Bits are
transferred one after the other over a
single communication path.

Copyright © 2015 Pearson Education, Inc. 2.39

Measurement units
Bps: Bits per second
Kbps: Kilo-bps (1,000 bps)
Mbps: Mega-bps (1,000,000 bps)
Gbps: Giga-bps (1,000,000,000 bps)
Bandwidth: Maximum available rate

Copyright © 2015 Pearson Education, Inc. 2-40

Programing languages shields users from
details of the machine:

A single Python statement might map to one,
tens, or hundreds of machine instructions

Programmer does not need to know if the
processor is RISC or CISC

Assigning variables surely involves LOAD,
STORE, and MOVE op-codes

Copyright © 2015 Pearson Education, Inc. 2-41

Bitwise Problems as Python Code

print(bin(0b10011010 & 0b11001001))
Prints '0b10001000'

print(bin(0b10011010 | ©b11001601))
Prints 'eb11011011"

print(bin(0b10011010 ~ 0b11001001))
Prints '0b1010011'

Copyright © 2015 Pearson Education, Inc. 2.42

Control Structures

 |f statement:
if (water_temp > 140):
print('Bath water too hot!"')
« While statement:

while (n < 10):
print(n)
n=n+1

Copyright © 2015 Pearson Education, Inc. 2.43

Function: A name for a series of
operations that should be performed on
the given parameter or parameters

Function call: Appearance of a function
IN an expression or statement

x = 1034
y = 1056
z = 2078

biggest = max(x, y, z)
print(biggest) # Prints '2078'

Copyright © 2015 Pearson Education, Inc. 2.44

Argument Value: A value plugged into a
parameter

Fruitful functions return a value

void functions, or procedures, do not
return a value

sideA = 3.0

sideB = 4.0

Calculate third side via Pythagorean Theorem
hypotenuse = math.sqrt(sideA**2 + sideB**2)
print(hypotenuse)

Copyright © 2015 Pearson Education, Inc. 2.45

Input / Output

Calculates the hypotenuse of a right triangle

import math

Inputting the side lengths, first try
sideA = int(input('Length of side A? "))
sideB = int(input('Length of side B? '))

Calculate third side via Pythagorean Theorem
hypotenuse = math.sqgrt(sideA**2 + sideB**2)

print(hypotenuse)

Copyright © 2015 Pearson Education, Inc. 2.46

Marathon Training Assistant

Marathon training assistant.
import math

This function converts a number of minutes and
seconds into just seconds.
def total seconds(min, sec):

return min * 60 + sec

This function calculates a speed in miles per hour given
a time (in seconds) to run a single mile.
def speed(time):

return 3600 / time

Copyright © 2015 Pearson Education, Inc. 2.47

Marathon Training Assistant
(continued)

Prompt user for pace and mileage.
pace minutes = int(input('Minutes per mile? "))
pace seconds = int(input('Seconds per mile? "))
miles = int(input('Total miles? "))

Calculate and print speed.
mph = speed(total seconds(pace minutes, pace seconds))
print('Your speed is ' + str(mph) + ' mph')

Calculate elapsed time for planned workout.

total = miles * total seconds(pace minutes, pace seconds)
elapsed minutes = total // 60

elapsed seconds = total % 60

print('Your elapsed time is
' mins

+ str(elapsed minutes) +
+ str(elapsed seconds) + ' secs')

Copyright © 2015 Pearson Education, Inc. 2.48

Figure 2.15 Example Marathon
Training Data

Time Per Mile

Total Elapsed Time

Minutes | Seconds | Miles Speed (mph) Minutes | Seconds
9 14 5| 6.49819494584 46 10
8 0 3 7.5 24 0
7 45 6| 7.74193548387 46 30
7 25 1| 8.08988764044 7 25

Copyright © 2015 Pearson Education, Inc.

2-49

Technologies to increase throughput:
Pipelining: Overlap steps of the machine cycle

Parallel Processing: Use multiple processors
simultaneously

SISD: No parallel processing
MIMD: Different programs, different data
SIMD: Same program, different data

Copyright © 2015 Pearson Education, Inc. 0-50

