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Neighbor discovery is a fundamental task to support many other services in wireless multihop
networks (WMN). Most existing related methods in WMN rely heavily on the information of radio
waves. To extend the way to the neighbor discovery, this paper introduces another interesting way,
visual light communication, to explore its property of linear transmission. We apply light emitting
diode (LED) array and camera and present a novel communication system, named LED array to
camera system (LC). This paper also designs a novel protocol, named LED to camera protocol
(LCP), for it. Equipped with an LC, each node in a WMN can determine the precise direction
and distance of its neighbors and recognize their identities. Furthermore, this paper also develops
a method to infer the topology of the whole network. We design the hardware for LC and conduct
extensive experiments to implement the protocol LCP. The average latency of the neighbor discovery
is measured and can be as small as 1.087 seconds. LCP can achieve centimeter-level accuracy in
distance and direction to averages of 0.37 cm and 1.67 degrees in these real experiments. The relative
accuracies in distance and direction measurement are 99.11% and 88.92% on average, respectively.
The simulation of the topology inference is also performed to show the feasibility and accuracy with

the local distance and direction information.
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1. INTRODUCTION

Wireless multihop network (WMN) has attracted a lot of
researches in the past decades [1, 2]. As one of the fundamental
tasks, the neighbor discovery arouses a lot of excellent works
for its significance in establishing the first contact in the
network [3, 4]. Most of the works on neighbor discovery base
on the information of the radio wave, which has the properties
of diffusion attenuation, refraction, reflection and so on. The
properties affect the accuracy of the neighbor discovery. The
radio wave may cause a collision when some nodes are working
at the same time in the network. Furthermore, the bandwidth
of the radio wave is limited and thus valuable resources. These
factors motivate us to find another alternative way to discover
neighbors.

Fortunately, visible light communication (VLC) brings
a desired opportunity because of its linear transmission.
It enhances the node to find not only its neighbors but
also their distance and direction. There are lots of works
on camera/multimedia sensor networks [5]. A few of them

research neighbor discovery with a camera sensor [6], which
can find neighbors but cannot confirm their identities with
visual light. In this paper, we concern two interesting problems:
can the neighbors be found with high accuracy and can their
identities be recognized with visual light? The mode of light
emitting diode (LED) to camera communication in VLC gives
us many inspirations [7, 8]. To apply it, we have to overcome
some challenges. Firstly, although the camera can take a picture
of the LED, it is hard to determine the distance between them
accurately. Secondly, the camera has the character of high
energy consumption so it is crucial to decrease the times to use
a camera. Thirdly, it is important to transmit data from LED to
the camera in an efficient way.

This paper designs a new system LED array to camera
system (LC) with an LED array or camera to identify neighbors
with high accuracy. To distinguish our work from the traditional
radio-based neighbor discovery, this paper introduces a term
of neighbor identification. In WMN, our LC system cannot
only measure the distance and angle between a node and its
neighbors but also obtain their identities with visual light. LC
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can provide a one-to-many type of neighbor identification. It
can also obtain the structure characteristic of the network, such
as topology, by the distributively accurate measurement of the
distance and angle among nodes. Certainly, the application
scenarios of our LC system are not limited to the WMN. LC
provides a way of light-based identification that enables the dis-
covery and interaction among different objects. For example, it
can be applied to the recognition and information interaction
between robots or intelligent cars. Besides, based on LC, we
may further realize a way of light communication where data
transmission can still take place with some relay nodes when
the LED is not captured by the camera. We design a protocol
LED camera to protocol (LCP) to support LC. In addition to
the system design and performance evaluation, we study LC’s
application in topology inference. We also perform extensive
simulations to validate its feasibility.

The contributions of this paper are listed below:

• Combined with VLC, this paper presents a novel system
LC to provide a new way to identify neighbors.

• LC eliminates ambiguities in expressing identities by
designing a special LED array pattern. With the well-
designed protocol LCP, it can achieve the correct expres-
sion and extraction of identities.

• With the distributive neighbor identification, this paper
proposes a method to infer the topology of the whole
network. We also perform extensive simulations to verify
the feasibility of constructing network topology through
neighbor identification. The simulation results show that
a 90% similar topology can be constructed with only
six identification processes when there are 120 nodes
deployed in the network.

• We build a testbed of LC and conduct experiments in an
indoor environment. The results demonstrate that LC has
at least 70% identification accuracy under various con-
ditions. The average identification latency is as small as
1.087 seconds. The average errors are 0.37 cm and 1.67◦
on the distance and angle measurement, respectively. The
relative average errors on them are 0.89% and 11.08%,
respectively.

Roud Map. After motivation illustration and challenge
explanation in Section 2, Sections 3 and 4 describe system
design and details of protocol (LCP), respectively. Section 5
presents the inference process of topology construction.
Sections 6 and 7 provide experimental evaluation and simu-
lation results, respectively. Section 8 introduces related work
and Section 9 concludes this paper.

Most symbols in this paper are summarized in Table 1.

2. MOTIVATION AND CHALLENGE

2.1. Motivation

Neighbor discovery is a fundamental technique in WMN since
it serves as a critical step to establish communication in the

TABLE 1 Symbol and meaning.

Sym. Description Sym. Description

v Node l LED
I Node ID d Distance of LEDs
P Temporary ID pair m # of LEDs
t Value in P k # of nodes
b Binary value of t n # of zero bits
S Set of LED positions (x, y) Coordinate of LED
G Group of coordinates R Communication radius
N Set of 2i, i = 0, · · · , n T Registration frame period

network [4, 9–11]. Most of the existing works on neighbor dis-
covery are based on the information of radio waves [3, 12]. For
example, the information from radio waves, such as received
signal strength (RSS), is adopted to locate the nodes’ positions
[13, 14]. Radio wave has the inherent properties of diffusion
attenuation, refraction, reflection and so on, which may be
timevariable [15]. So the node in WMN can merely determine
the neighbor nodes in its communication range and their rough
distances. The neighbors’ positions can be estimated only after
some algorithms, such as the three-step localization algorithm
in [16], are adopted to exchange the related information among
nodes. In another case, the node is equipped with the directional
antenna and the estimation accuracy for the neighbor direction
can be improved. But it is still rough and the distance estimation
among nodes is not improved. The cooperation among nodes is
still needed [17].

Furthermore, a successful neighbor discovery can take place
when a node listens on the channel and at the same time
another one sends a beacon [18]. Thus, an intricate protocol
is required to ensure its upper-bounded latency. However, they
suffer performance degradation when a large number of nodes
deployed in the network mainly due to the existence of channel
conflicts. On the other side, this kind of neighbor discovery can
only identify nodes within communication range and cannot
determine their exact relative positions. Although some works
realize node localization, many of them involve complex signal
processing inevitably, thus resulting in non-ignorable overhead
on limited energy budgets since antenna consumes most of the
energy when it works [19–21].

In recent years, VLC becomes a research hot topic and it has
the good property: linear transmission. In many VLC works,
the LED as a light source is introduced due to its properties
of low power consumption and supporting high flashing fre-
quency. Besides, the appearance of small low-cost and low-
power camera sensor provides a boost to the VLC research,
which provides an opportunity to obtain the light information
of LED without loss the sharpness [6, 22]. Therefore, we
explore a new paradigm that applies the communication mode
in VLC to WMN to realize neighbor identification. There are
two desirable advantages: (i) Change in light intensity can be
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primely captured by the camera sensor and (ii) modulating light
with a specific meaning makes the node in an energy-efficient
state.

2.2. Challenges to adopt VLC

In the mode of the LED to camera communication, the LED
transmits data by flashing at a high frequency and mean-
while the camera captures consecutive pictures [23]. Due to
the rolling shutter effect of CMOS camera, the light signals
appear in the picture as stripes with different colors [7]. By
detecting the colors of these stripes, the data carried by the
light signals can be obtained. Usually, OpenCV is a common
tool for image processing. For example, Yang et al. and Hao et
al. adopt OpenCV to extract the region of light in the picture
and further recognize each stripe [8, 24]. Finally, a bit string
can be obtained from each picture. Although the purpose of
these VLC works is different from our LC system, the existing
methods of expressing data by flashing LEDs and extracting
data from pictures can be used for reference. We apply this
communication mode to our LC system in which the node
equipped with a camera sensor is called observer and the
node equipped with three LEDs is called actor. Two practical
challenges we face are elaborated below.

2.2.1. Ambiguities in identity expression
Thanks to the employment of the camera sensor, the observer
node is able to obtain the image information of surrounding
actor nodes, which are equipped with an LED array. How-
ever, these actor nodes are usually deployed randomly in real
applications. Their different locations and orientations make it
possible for the observer node to extract identities incorrectly.
In order to realize the correct extraction of identity from the
picture, the pattern of the LED array is of great significance.
An unsatisfactory LED array pattern may cause ambiguities in
identity expression.

Figure 1 shows three example scenarios where an imperfect
LED array pattern causes a problematic identity extraction. We
let the actor node turn on certain LEDs to express its identity
and the observer node extract identity from the picture taken.
Specifically, the observer node needs to detect the LEDs from
the picture and then figures out what it means. In Fig. 1, we
use a solid circle to indicate an on LED and a hollow circle
to indicate an off LED. The first one, in Fig. 1a, shows that an
actor node turns all three LEDs on. However, the observer node
cannot determine whether it is upside down even if three LED
positions can be all detected. The example in Fig. 1b shows
that there is a confusion of two possible LED array positions
so that the observer node cannot determine the true message
expressed by the actor node. Moreover, due to the uncertain
distance between the observer node and the actor node, there
is also a scenario as shown in Fig. 1c. An off LED may be in
the middle of two on LEDs. These ambiguities arise due to the
uncertainty among LED positions. Therefore, a proper LED

FIGURE 1. Imperfect LED array cannot express message
correctly.

FIGURE 2. The difficulty to distinguish multiple LED arrays.

array pattern is an urge to be designed to ensure LED array
can be highly detectable, especially when multiple actor nodes
present different positions and orientations.

Additionally, a message expression method based on LED
array shall be designed elaborately. Two conditions should be
satisfied: (i) ensuring the observer node can detect all LED
positions from the picture and (ii) guaranteeing the uniqueness
of the message expressed by each actor node.

2.2.2. Interference in identity extraction
The second challenge is to deal with interference among mul-
tiple LED arrays. When more than one actor nodes locate
together, multiple LED arrays appear in the field of view (FoV)
of the camera. Light beams from one LED array affect that from
another one inevitably.

Figure 2a gives an example where three actor nodes are
adjacent in positions. At this point, the observer node cannot
determine which is the true combination. Specifically, the
observer node cannot distinguish whether the horizontal three
LEDs come from the same actor node or vertical three ones, as
shown in Fig. 2b. Also, the actual exhibition of the LED array
may not ideally be a horizontal or vertical line. Three LEDs
may on an oblique line and with different compactness in the
picture. To overcome this challenge, an algorithm that exploits
the features of the LED array is developed, which is robust
against different rotation angles of actor nodes.

3. SYSTEM DESIGN

3.1. Design overview

As mentioned before, our system equips each node with a
camera sensor and three LEDs. These three LEDs form a
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FIGURE 3. System overview of LC.

special LED array as they are arranged in particular positions.
Besides, each node is assigned a unique ID, denoted by I,
beforehand and can communicate with other nodes through a
built-in omnidirectional antenna. Figure 3 illustrates the system
overview of LC. Multiple actor nodes express their own iden-
tities via three LEDs. Meanwhile, an observer node equipped
with a camera sensor takes a picture of these actor nodes.
Applying a simple image processing method, each on LED,
in the picture can be easily detected. Then the observer node
can derive these actor nodes’ identities by exploiting these LED
positions. Finally, neighbor identification is realized. We leave
details to the later sections.

The design of LC consists of three components. The first one
is identity expression. In this component, we introduce a special
pattern of the LED array in detail. Also, a basic identity expres-
sion method based on the LED array is presented. The second
component is identity extraction in which an image processing
method used to detect LED is described. We also analyze
some potential problems when the basic identity expression
method is applied directly. To solve these problems, we design
the LCP in the third component. Specifically, LCP gives an
advanced identity expression method and provides a multi-
node identification (MI) algorithm. The method of measuring
neighbors’ relative distances and angles is also described. We
put the first two components in this section and the third
component in Section 4.

The technique steps proposed in later sections can be sum-
marized in Fig. 4.

3.2. Expressing identity with LEDs

As previously discussed, there are some undesired scenarios
when expressing the identity via the LED array. Thus, a special
LED array pattern is designed in our LC system. It can ease
LED array detection even when the actor node presents various
positions and orientations relative to the observer node.

3.2.1. LED array pattern
The LED array pattern refers to a special positional relationship
of three LEDs. Three LEDs are arranged with heterogeneous
spacing in a straight line. Figure 6 shows an example, i.e.
TelosB node with LED arrangement. We illustrate the LED

FIGURE 4. Flowchart of LC system.

FIGURE 5. LED array pattern.

FIGURE 6. TelosB node with arranged LEDs.

array pattern in Fig. 5. An LED array incorporates three LEDs:
l1, l2 and l3, where l1 is defined as the highest position in the
array and l3 represents the lowest position. Let d12 and d23
denote distances between l1 and l2, and l2 and l3, respectively.
The distance d12 is set to be twice of the distance d23, i.e.
d12 = 2d23.

This special pattern design provides two benefits in our LC
system. First, the observer node can determine the highest and
lowest positions of the LED array even if the actor node is
upside down because the ratio of d12/d23 is always a constant.
Second, if multiple actor nodes appear in the FoV of camera,
such design also serves as a criterion for determining which
three LEDs come from the same actor node as illustrated in
Section 4.3.

3.2.2. Basic identity expression method
To express identity with an LED array, LC adopts a basic
identity expression method. The actor node transmits a short
message at a time and each short message is determined by the
status of the LED array. Denote the number of LEDs in an array
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pattern by m. In our system, m = 3. We specify that each LED
represents one bit as each one can work in two states: on and
off . The bit is 1 when the LED is on and 0 otherwise. The short
message transmitted via LED array is actually a binary value of
the actor node’s identity and contains m bits. So one LED array
can express the identity from 0 to 2m − 1. For example, if an
actor node’s ID equals 2, i.e. I = 2, then its binary value is 010.
It can turn on l2 and turn off l1 and l3 to express its identity.

3.3. Extracting identity from the picture

3.3.1. Hue-based object detection
After multiple actor nodes express their own identities via LED
arrays, the observer node turns on the camera sensor to take
a picture. This picture contains the status of every LED array
that appears in the FoV of camera sensor. Each on LED in the
picture can be detected according to its color of emitted light
beams. In our LC system, the LED emits a red light beam when
it is turned on. Thus, an on LED appears as a red region in the
picture. The observer node applies a hue-based object detection
method to detect red objects in this picture. The hue-based
object detection is a lightweight method that calculates hue and
saturation of each pixel of the object and then uses them as the
primary filtering parameters [25, 26]. Specifically, the observer
node converts the Red Green Blue (RGB) images to an Hue
Saturation Value (HSV) image and then filters out pixels whose
hue and saturation are not within our desired value range. With
this method, all on LEDs in the picture can be detected. LC
records all LED positions into a set S and further uses the set S
to determine each actor node’s identity.

3.3.2. Analysis
However, it may be infeasible to determine each actor node’s
identity with only a set S. There are two conditions we have to
satisfy as mentioned before: (i) an observer node must detect
all LED positions from the picture so that it can perform
grouping operation, i.e. determining which three LED positions
come from the same LED array. There must be k ∗ m LED
positions in the set S, where k denotes the number of actor nodes
that appeared in the FoV of camera sensor. (ii) The identity
expressed by each actor node shall be different from each other
so that the observer node can distinguish them.

To satisfy the first condition, all LEDs of each actor node are
required to be turned on. The picture taken at this time is shown
in Fig. 7a. The observer node can obtain all LED positions
and then get them grouped. Whereas, these actor nodes cannot
be distinguished from each other due to the same identity, i.e.
the same LED array state. Figure 7b indicates the case where
each actor node expresses a different identity. Nevertheless,
the observer node cannot extract identities correctly, because
the set S contains only positions of on LEDs. The grouping
operation cannot be performed. Hence, the two conditions
above cannot be satisfied simultaneously. The main reason is
that the hue-based detection method can only detect on LED,

FIGURE 7. Cannot satisfy both conditions at the same time.

thus limiting observer node’s ability to determine which array
pattern an LED belongs to.

To remove this limitation, we design LCP in the next section.
It gives an advanced identity expression method that works for
two rounds. With this method, those actor nodes express their
identities twice and the observer node takes the picture twice as
well. For each picture, the hue-based object detection method
is applied. Consequently, the observer node obtains two sets:
S1 and S2.

4. LED TO CAMERA PROTOCOL

In this section, we elaborate LCP that gives an advanced iden-
tity expression method to enhance the ability of the observer
node to perform a grouping operation. This advanced method
is a way for actor nodes to express identities in two rounds. Fur-
thermore, LCP provides the MI algorithm for the observer node
to extract multiple identities from two pictures. Additionally,
LCP gives a method of measuring neighbors’ relative distances
and angles.

4.1. Registration phase

For the purpose of neighbor identification, we need to match
the identities extracted from the picture with nodes’ IDs. Thus,
there is a preparatory phase for an observer node to collect all
actor nodes’ IDs. In this phase, each actor node sends a radio
frame to the observer node to register its ID. We call this radio
frame the registration frame for it contains only the actor node’s
ID in its payload. So its transmission and reception do not
involve complex signal processing. Meanwhile, the observer
node maintains a neighbor table to record each actor node’s
ID.

Figure 8 shows an example. An observer node vi has a circu-
lar communication range with radius R. The FoV of camera
sensor it equipped is depicted by a sector. Four actor nodes
locating in the communication range send registration frames
separately. When an observer node vi receives these registration
frames, it extracts each one’s ID and inserts a corresponding
entry into the neighbor table.
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FIGURE 8. The observer node vi collects four actor nodes’ IDs.

FIGURE 9. The observer node vi updates neighbor table with
temporary ID pairs.

In reality, the preparatory phase may be omitted if the
observer node can obtain such adjacency information from
other applications.

4.2. Advanced identity expression method

Due to the limitation of basic identity expression method, LCP
gives an advanced identity expression method. It is applied
by the observer node when all actor nodes’ IDs are recorded.
At this point, the neighbor table is updated with additional
information, i.e. temporary ID pair denoted by P. As shown
in Fig. 9, the neighbor table matches each actor node’s ID to its
temporary ID pair. Each temporary ID pair contains two values
and is subsequently assigned to the actor node by wireless
communication. In the description of LCP, the term identity
always refers to the temporary ID pair.

When actor nodes are assigned with such temporary ID pairs,
they express these new identities through their LED arrays in
two rounds. The temporary ID pair is denoted by P = [t1, t2]
where t1 is a value in the range of 0, · · · , 2m − 1. The second
value t2 is determined by the complement operation.

Definition 4.1. (Complement operation). Denote t1’s binary
complement by t1. Let n denote the number of zero bits in t1.
Then set N = {0, · · · , 2n − 1} is obtained. Each element in
N is converted to a binary value and then inserted to the zero
position of t1’s bits from right to left. The obtained binary value
is denoted by t2. Then observer node assigns the same value t1
and different t2 to 2n actor nodes.

Again take Fig. 8 as an example where an observer node vi
has four actor nodes: vj, vk, vp and vq. To generate an adequate
number of temporary ID pairs, node vi sets t1 = 5 for all actor

FIGURE 10. The example of the complement operation.

TABLE 2 All possible temporary ID pairs when m = 3.

No. t1 t2

0 000 111
1 001 110,111
2 010 101,111
3 011 100,101,110,111
4 100 011,111
5 101 010,011,110,111
6 110 001,011,101,111
7 111 000,001,010,011,100,101,110,111

nodes. Since t1’s binary value is 101, its binary complement is
010. There are two zero bits in 010, i.e. n = 2. Then set N =
{0, 1, 2, 3} is obtained. Convert each element in N to a binary
value. Then set N

′ = {00, 01, 10, 11} is obtained. Each element
in N

′
is inserted into the zero position of 010. The second value

t2 for vj is 010, for vk is 011, for vp is 110 and for vq is 111. The
process is summarized in Fig. 10. Finally, four actor nodes are
assigned with temporary ID pair [5,2], [5,3], [5,6] and [5,7],
respectively.

By the complement operation, all temporary ID pairs can be
worked out. Table 2 lists all available temporary ID pairs when
m = 3.

To illustrate the applicability of this advanced identity
expression method in our work, we are ready to introduce a
useful property, which enables the observer node to distinguish
each actor node.

Property 4.1. b1 and b2 are the binary values of temporary
ID pair’s first and second values, respectively. The result of b1
OR b2 always is the maximum value that an actor node can
express, i.e. 2m − 1.

The verification of Property 4.1 is straightforward as b2 is
equal to the binary value of t1 plusing several bits at zero
positions. With Property 4.1, the observer node is able to obtain
all three LED positions in arbitrary identity expression as long
as the temporary ID pair is generated by complement operation.

For example, an actor node vk is assigned a temporary ID
pair [5, 3], the binary values of t1 and t2 are b1 = 101 and
b2 = 011, respectively. By expressing this identity through its
LED array, the observer node can get a set S1 containing LED
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array’s highest and lowest positions in the first round, and a
set S2 containing middle and lowest positions in the second
round. Finally, all three LED positions can be obtained, i.e.
S = S1

⋃
S2.

In general, the advanced identity expression method is very
suitable for our work. It well satisfies the demand of getting
all LED positions obtained by observer node while keeping the
uniqueness of each identity. Compared with the basic identity
expression method mentioned above, the advanced identity
expression method has more scalability. Theoretically, when
m = 3, it can be applied to a situation where an observer node
has no more than eight actor nodes.

4.3. Multi-node identification algorithm

With the application of advanced identity expression method,
the whole neighbor identification process works in two rounds.
The observer node obtains two pictures of actor nodes. For
each picture, the hue-based object detection method is applied
to detect on LEDs. Then sets S1, S2 and S are obtained where
S = S1

⋃
S2 contains k ∗ m LED positions. With S1, S2 and S,

observer nodes are now able to extract identities by analyzing
these LED positions.

When more than one actor nodes appear in the FoV of cam-
era sensor, the observer node firstly divides the set S into several
groups. This grouping operation benefits from the LED array
pattern designed in section 3.2.1. Specifically, in the picture
captured by camera sensor, the Euclidean distances among
three LEDs (d12 and d23) may be different from other node’s
ones. The ratio of them certainly satisfies the condition for any
actor node, i.e. d12/d23 = 2. Denote three LED positions picked
from set S by three coordinates (x1, y1), (x2, y2) and (x3, y3). If
they come from the same LED array, we have two following
equations:

y2 − y1

x2 − x1
= y3 − y1

x3 − x1
. (1)

y2 − y1

y3 − y1
= 2

3
and

x2 − x1

x3 − x1
= 2

3
. (2)

By these two equations, LC can check and group LED
positions in set S. Each group containing three LED positions
represents an LED array. For each group, LED positions in the
sets S1 and S2 that belong to the same LED array can be picked
out. That is, LC is able to determine which LEDs that actor node
turns on at both time when a picture is captured. Thus observer
node can figure out the messages that actor nodes expressed
in each round and get each one’s identity, i.e. temporary
ID pair.

For example, a group contains three coordinates denoted by
G and G = {(155, 44), (219, 46), (251, 47)}. These three coor-
dinates are the highest, middle and lowest position in an LED
array pattern, respectively. The observer node then searches the
LED positions that belong to group G in two sets, S1 and S2.
There are two LED positions in set S1 and two in set S2 that
belong to G, which are denoted by G1 = {(155, 44), (251, 47)}

and G2 = {(219, 46), (251, 47)}, respectively. So it can get
binary value 101 that actor node expressed in the first round
and 011 in the second round, thus getting temporary ID pair
[5, 3]. Finally, the observer node searches an entry where the
temporary ID pairs equal [5, 3] in its neighbor table and know
which node it faces.

After one neighbor node gets identified, LC repeats the
same procedure to remaining LED positions of three sets until
all neighbors get identified. Our MI algorithm is listed in
Algorithm 1.

Algorithm 1 The MI Algorithm

• Input: S1, S2, S
• Output: Node ID list J
• 1: G ⇐ φ, G1 ⇐ φ, G2 ⇐ φ;
• 2: while S �= φ do
• 3: repeat
• 4: Select three elements e1, e2, e3 from S;
• 5: until e1, e2, e3 satisfy both Equation 1 and 2
• 6: G ⇐ G

⋃{e1, e2, e3};
• 7: for each element e in S1 and e ∈ G do
• 8: G1 ⇐ G1

⋃{e};
• 9: end for
• 10: for each element e in S2 and e ∈ G do
• 11: G2 ⇐ G2

⋃{e};
• 12: end for
• 13: Determine node ID I and insert I to the J
• 14: S ⇐ S − G, S1 ⇐ S1 − G1, S2 ⇐ S2 − G2;
• 15: G ⇐ φ, G1 ⇐ φ, G2 ⇐ φ;
• 16: end while
• 17: return J;

4.4. Measurement of relative position

Besides the extraction of identities from the picture, the deter-
mination of neighbors’ relative positions can also be achieved.
By exploiting the imaging mechanism of convex lens, the
observer node can calculate actor nodes’ relative distances
and angles [6, 27]. Figure 11 shows the imaging process of
the camera. O denotes the camera lens. The orientation of
camera can be denoted by a vector

−→
OL. L

′
is a projection of

L on the image plane, which is also a center of the captured
picture.

A line segment RK represents an LED array on the node
where R and K denote LED l1 and l3, respectively, as men-
tioned in Fig. 5. The middle of R and K is denoted by Q. The
projections of these three points are denoted by R

′
, Q

′
and K

′
,

respectively. The camera maintains a coordinate system for its
captured picture. Thus, every point has a pair of coordinates
for its unique position on the image plane. L

′
has a coordinate

of (0, 0) since it is a center of the picture. Likewise, the
coordinates of R

′
, Q

′
and K

′
are denoted by (xR′ , yR′ ), (xQ′ , yQ′ )

and (xK′ , yK′ ), respectively. By measuring the number of pixels,
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FIGURE 11. An actor node and its projection on the image plane.

we have

|R′
K

′ | =
√

(xR′ − xK′ )2 + (yR′ − yK′ )2. (3)

|L′
Q

′ | =
√

xQ′ 2 + yQ′ 2. (4)

Based on the imaging mechanism, we get two pairs of similar
triangles: 	R

′
K

′
O ∼ 	RKO and 	L

′
Q

′
O ∼ 	LQO. In the

first pair of similar triangles, we have

|R′
K

′ |
|L′O| = |RK|

|LO| . (5)

Note that |L′
O| is the focal length of the camera and we denote

such a known parameter by f . The length of line segment RK
is also a constant that can be measured in advance and we let
|RK| = C. So the vertical distance between node and camera
can be obtained as

|LO| = |RK| · |L′
O|

|R′K ′ | = C · f

|R′K ′ | . (6)

Similarly, in the second pair of similar triangles, we have

|LQ| = |L′
Q

′ | · |LO|
f

= C · |L′
Q

′ |
|R′K ′ | . (7)

Then the distance and angle of the node relative to the camera
can be calculated as

|QO| =
√

|LO|2 + |LQ|2,

� LOQ = arctan

( |LQ|
|LO|

)
.

(8)

If the node is not facing forward to the camera, the 	LQO
is a right triangle no more. So the Pythagorean theorem is no
longer suitable for the calculation of the length of line segment
QO. Nevertheless, the real distance between two nodes in the
network is usually much greater than the size of the node

FIGURE 12. The example of WMN.

itself, i.e. |LO| � |RK|. In this case, when node’s orientation
changes, the variation of � LOQ is merely within a small range.
At this point, if the Pythagorean theorem is still used to the
calculation, the measurement error might increase a little bit
but we believe that it is within an acceptable limit.

5. TOPOLOGY INFERENCE

In this section, we illustrate a practical application of neighbor
identification, i.e. topology inference. Understanding the net-
work structure is of great significance for network management
and resource deployment. Compared with the neighbor discov-
ery by wireless communication, the way to identify neighbors
through image is much accurate and faster because there is no
such problem as channel conflict. Such image-based method
can inherently provide a one-to-many type of identification.
Thus, it has good performance in terms of time.

Figure 12 depicts a simple example of WMN in which eight
nodes are deployed randomly. Each node’s radio coverage area
can be represented by a circle with radius R. Two nodes with
a distance less than R can communicate with each other and
transmit/receive neighbor identification information. The sec-
tor represents the FoV coverage area of camera sensor equipped
on each node. Each node can identify neighbors locating in its
sector. For the sake of clarity, we draw only the fan-shaped
coverage area of each node.

Among them, one node plays a special role. Node v0 serves
as a sink node. The sink node collects all available identification
information and subsequently reduces network topology layer
by layer, as shown in Fig. 13. Specifically, the sink node is
recorded in the first layer. Those nodes identified by sink node
and not present in the previous layer are recorded in the next
layer. If a node does not appear in the neighbor identification
chain of sink node but there is a communication path between
them, then it is recorded in the first layer. Then nodes of
subsequent layers are obtained in the same way until there are
no available nodes. Thus, a directed graph describing network
topology can be obtained.
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FIGURE 13. Topology inferred by sink node.

FIGURE 14. LC system testbed.

6. EXPERIMENTAL EVALUATION

6.1. System setup

In the LC system, we employ the TelosB sensor node as the
actor node. It is equipped with a TI MSP430 microcontroller, a
CC2420 radio chip and a 48-KB program flash memory. We
employ a shield plate to cover hardware details so that the
camera sensor has good recognition performance. We replace
the original three LEDs with three 3.5-mm SMD LEDs. They
are further welded onto the shield plate and arranged with
heterogeneous spacing. The slightly modified TelosB node
is shown in Fig. 14a. Recall that actor nodes shall send a
registration frame to the observer node in the registration phase.
In our experiment, we program the TelosB node to send radio
frames out with a period of 1 second, denoted by T . When
TelosB node receives a radio frame from observer node, it turns
on corresponding LEDs to represent a binary value of data
contained in the radio frame.

The observer node in our LC system is implemented using
Arduino Mega 2560 and CMUcam5 [25]. CMUcam5 is
an open-source programmable image sensor with an NXP
LPC4330 processor and an OV9715 OmniVision camera.
The camera supports 1280 by 800 resolution and has a FoV
of 75◦ on horizontal and 47◦ on vertical. The image sensor
applies a hue-based color filtering algorithm to detect objects
and then sends only positions to the Arduino (e.g. LED at

x=100, y=80). So the CMUcam5 sensor is suitable for the
LED detection in our system. As the Arduino receives a series
of detected LED positions, it can further perform the process of
neighbor identification. To enable the communication between
Arduino and TelosB, we adopt an XBee module that supports
the IEEE 802.15.4 protocol stack. Various components of the
observer node are depicted in Fig. 14b.

Our evaluation is focused on the following metrics:

• System performance under different distances.
• The impact of ambient light intensity on the rate of

identification.
• Adaptability of system under different camera viewing

angles.
• Robustness of system with different node rotations.
• Average latency of the entire neighbor identification

process.
• System’s accuracy of distance and angle measurement.

Beside identification latency and measurement accuracy, we
test LC in terms of LED Recognition Ratio (LRR) and Neigh-
bor Identification Ratio (NIR). The former is the ratio between
the number of objects recognized as LEDs and the true number
of LEDs that appear in the picture. The latter is calculated as
the number of neighbors that get identified divided by the total
ones in the FoV of camera sensor. In the following section, each
experiment consists of 20 tests. Then we provide the average
results of all the tests, except for identification latency where
we also provide the maximum and minimum values.

6.2. Result analysis

6.2.1. Distance impact on identification
Since the camera sensor is utilized as a receiver of light beams,
the distance between the camera sensor and the neighbor node
is a key factor affecting system performance. Therefore, we
first investigate performance under different distances in terms
of LRR and NIR. We put TelosB nodes in the FoV of camera
sensor to ensure that all LEDs on the shield plate can be cap-
tured. Both of them are placed in a normal indoor illumination
condition, about 500 lux. We vary the distance from 20 cm to
80 cm to explore the maximum recognizable distance that LC
can achieve. The results are shown in Fig. 15.

It is understandable that LC’s ability of LED recognition
was influenced by the distance between the camera sensor
and TelosB nodes. As the distance increased, LC is hard to
distinguish every LED because every LED’s region in the
picture is small. The camera sensor is likely to recognize only
two LEDs in one array pattern instead of three. We can observe
that both LRR and NIR drop when the distance is over 60
cm and NIR drops dramatically because incompleteness of
recognized LEDs increases the chance of grouping error and
thus resulting in a lower NIR. In general, our LC maintains a
good identification performance with distance no more than 50
cm. In the following experiment, we fix the distance at 40 cm.
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FIGURE 15. Performance under different distances.

FIGURE 16. Performance under different illuminance.

6.2.2. Impact of ambient light
Since LC transmits identities by light beams, it is of great
importance to analyze the impact of ambient light on the
performance of LC. Thus, we carry out experiments in a lab
under different lighting environments. With fixed node-camera
distance, we vary illuminance from 200 lux to 1200 lux, which
is monitored by a TSL2561 light sensor near the TelosB node.
We keep the camera sensor under default parameter settings.
The results in terms of LRR and NIR are shown in Fig. 16.

As LC relies on the recognition of LEDs, a brighter lumi-
nance causes a higher camera’s recognition error and hence
affects the process of neighbor identification. As shown in
Fig. 16a, LRR is higher than 100% when light intensity reaches
1200 lux. This fact means that some areas in the picture are
also recognized as LEDs and thus the number of LEDs in the
picture more than the actual ones. Consequently, LC may not
have good identification performance since unreal LEDs affect
grouping operation of LED positions, e.g. NIR drops dramati-
cally under 1200 lux in Fig. 16b. Whereas, when ambient light
is normal, LC maintains good performance. Although the dim
luminance may cause a little high LRR, e.g. 200 lux, NIR still
maintains at least 85%. It also implies the robustness of our
MI algorithm. In general, LC achieves a good performance in
our indoor lighting environment with the illuminance no more
than 1000 lux. The factor that most influences performance is
the reflected light of the shield plate we employed. Thus, we

FIGURE 17. Performance under different viewing angles.

recommend using a board with a rough surface to hide node’s
hardware details.

6.2.3. Performance under viewing angle
In this section, we test the adaptability of LC against different
camera viewing angles. We represent viewing angle by two
simple angles, α and γ . They denote the pitch angle and yaw
angle of a node relative to the camera sensor, respectively.
These two angles are shown in Fig. 18 and Fig. 19. With
fixed distance and illumination intensity, we vary the angle
α between [0◦, 90◦] and γ between [-60◦, 60◦] to emulate
all possible realistic scenarios. For example, if a node faces
the camera sensor perpendicularly, the viewing angle can be
represented as α = 0◦ and γ = 0◦. If the node deflects to the left,
then the value of γ is negative. When we test the performance
under different α, we keep γ = 0◦. Similarly, the angle α is kept
at 0◦ while measuring the maximum deflection angle of node.
The results in terms of LRR and NIR are shown in Fig. 17.
Although the performance under α between [0◦, 45◦] is not
provided, LC still maintains good performance.

Figure 17 shows that LC’s performance degrades as the
viewing angle increased. A larger viewing angle leads to a more
weakened light received by camera sensor that in turn affects
the process of LED recognition. To be specific, LC fails to
detect the dim LED in the picture because the camera sensor
we employed detects objects by color hue. Then the partial
detected LEDs cause grouping incorrectness and hence affect
the process of neighbor identification. Consequently, we can
observe both LRR and NIR reduce when angle α or γ increases.
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FIGURE 18. Pitch angle α.

FIGURE 19. Yaw angle γ .

Overall, LC maintains a rather good performance with α no
more than 75◦ and γ between [-30◦, 30◦]. Such a wild viewing
angle makes LC have good adaptability in the actual scenarios.

6.2.4. Performance under node rotation
In addition to the adaptability, we next test the robustness of LC
under different node rotations, i.e. roll angles as illustrated in
Fig. 20. Likewise, we fix the camera sensor at a 40-cm distance
and illumination intensity at 500 lux. Then we vary node’s roll
angles, denoted by β, from 0◦ to 180◦. When the node faces a
camera sensor horizontally, the angle β equals to 0◦. If the node
is upside down, then β = 180◦. Throughout the experiment, we
keep nodes facing forward to the camera sensor all the time to
ensure that all LEDs can be captured.

As we measured in section 6.2.1. The performance in terms
of LRR maintains 100% consistently since node-camera dis-
tance, ambient light intensity and viewing angles are all in good
condition. Thus, we provide only evaluation results in terms
of NIR in Fig. 21. When the roll angle varies, NIR changes
slightly. This observation indicates the stability and robust-
ness of LC in most roll angle ranges. Although performance
degrades when there are more than one node, LC still maintains
NIR of about 75%. This result benefits from the design of the
LED array pattern since it serves as a criterion for grouping
LED positions correctly.

FIGURE 20. Roll angle β.

FIGURE 21. Performance under varying rotations.

6.2.5. Average identification latency
We finally evaluate the identification latency cost by LC. Iden-
tification latency is defined as the time span from observer
node receiving registration frames till all neighbor nodes get
identified. It mainly consists of two parts of time: the waiting
time for registration and the processing time of hardware.
Recall that each actor node is configured to send registration
frames to the observer node with a period T , i.e. 1 second. So,
in our experiment, the waiting time of registration frame is set
to a value equal to period T , which ensures that registration
frames can be received while keeping the waiting time as short
as possible. The second one mainly depends on the amount
of detected LED positions. Thus, we investigate identification
latency under a varying number of nodes.

As we would expect, Fig. 22 shows that the total time
increases with the number of nodes. The more nodes appear
in the FoV of camera sensor, the more LEDs detected, i.e.
the more LED positions exist in the set S. Thus, the observer
node needs much time to determine which three LED positions
come from the same node. We also observe that the average
identification latency of each node decreases as the increment
of node’s number. For example, the average latency is 1087
ms when there are three nodes, less than 1342 ms when there
are two nodes. Based on this, we can conclude that LC is
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FIGURE 22. Identification latency.

FIGURE 23. An example of measuring relative position.

computationally efficient for the situation where one node often
has multiple neighbor nodes.

6.2.6. Measurement accuracy
In our LC system, an observer node can calculate the relative
distances and angles of actor nodes by exploiting the image
information captured by the camera. In this section, we inves-
tigate the accuracy of distance and angle measurement. We put
the TelosB node and the camera on a horizontal desktop without
any obstacle between them. The node keeps facing forward to
the camera but is placed at different positions. The ambient
light intensity is controlled in a constant state. Figure 23 shows
an example in which two Telosb nodes are placed in the FoV of
camera. Their distances relative to the camera are denoted by
ρ1 and ρ2, respectively. The relative angles are denoted by θ1
and θ2, respectively. We evaluate the measurement accuracy by
comparing the true ρ and θ with the calculated results of LC at
different positions.

We divide camera’s fan-shaped coverage area into multiple
rectangles and each rectangle has a width of 5 cm and a height
of 10 cm. The vertices of these rectangles are referred to as
candidate positions. Thus, we get 42 candidate positions in the
FoV of camera as depicted in Fig. 24. In these 42 candidate
positions, 10 test positions are selected randomly where we
place a TelosB node and perform the measurement of distance
and angle. At each test position, we do 20 calculations and then
provide the average errors. The experimental results are shown
in Fig. 25.

FIGURE 24. Select 10 test positions from 42 candidate positions.

FIGURE 25. Accuracy of distance and angle measurement.

TABLE 3 Comparison of measurement error.

System Distance Error (mm) Angle Error (◦)

Avg. S.D. Avg. S.D.

LC 3.70 3.58 1.67 10.78
LISTEN [6] 28.82 12.08 0.42 0.18

As can be seen from Fig. 25, both distance error and angle
error keep low at most test positions. One reason that can
account for the high error is the image distortion. The image
distortion makes the pixel measurement of LEDs at the edge
of picture very different from the real value and further affects
the calculation of relative distances and angles. Two obvious
examples are the measurement results at position 2 and 10.
Although this situation exists, the average errors on distance
and angle measurement are 0.37 cm and 1.67◦, respectively.
Then the relative average errors are 0.89% and 11.08%, respec-
tively. We also provide a comparison with the results in [6]
in terms of average (Avg.) and standard deviation (S.D.) error
of distance and angle measurement in Table 3. In general, the
accurate relative measurement can be achieved and it provides
a guarantee for the accurate neighbor identification.
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7. SIMULATIONS

In this section, we perform extensive simulations to verify the
feasibility of topology inference by such neighbor identifica-
tion process. Moreover, we study how the number of nodes
affects topology construction in a given size region. Also, the
maximum number of identification required to educe topology
is investigated.

7.1. Simulation settings

We first assume that each node has a wireless communication
radius of 20 m. Two nodes with a distance less than this
threshold can establish a communication link between each
other and transmit/receive neighbor identification information.
View range and FoV of the equipped camera sensor are defined
as 15 m and 90◦, respectively. If a node vj is covered by the fan-
shape area of node vi, then node vj is identified by node vi.

The simulations are performed within two different sized
regions: small region (SR) and large region (LR). The SR is
a 60 m by 60 m square area and the LR is a 130 m by 130 m
square. In two different regions, we both generate a sink node
and several common nodes with random camera orientations
while their locations satisfy a specified distribution. In the
following simulations, we are mainly concerned about two
common distribution pattern: uniform distribution (UD) and
normal distribution (ND). For a particular distribution, we vary
the total number of nodes, denoted by ‘# of nodes’, from 5 to
120 with the increment of 5. In each setting, the average result
of 150 independent simulations is calculated.

7.2. Topology similarity

After all nodes are generated, we simulate the data aggrega-
tion process in which neighbor identification information is
aggregated from each node to the same destination, i.e. sink
node. With identification information collected, the sink node
constructs a directed graph, i.e. topology, though a breadth-first
search. Obviously, if there is no communication path between
node vk and sink node due to too few relay nodes, then the
identification information of node vk will not be collected by
sink node. That is, node vk does not appear in the directed graph
built by sink node. Therefore, we evaluate the impact of node
number on topology similarity. Topology similarity is defined
as the ratio between the number of identified senor nodes and
the total number of nodes in the simulation area [28, 29].

The relationship between topology similarity and the num-
ber of nodes is depicted in Fig. 26. Intuitively, the topology
similarity increases with the number of nodes. In a given sized
region, the network has a great node density as the number of
nodes increases. Thus, there is a great likelihood for nodes to
identify each other. This phenomenon is especially obvious in
SR. As shown in Fig. 26a, topology similarity in SR increases
significantly since it is easier to achieve high node density

FIGURE 26. Topology similarity in two regions under both UD and
ND.

FIGURE 27. Max path length in two regions under both UD and ND.

compared with the one in LR. Although the topology similarity
in LR increases slowly, it can achieve about 91% when there are
120 nodes deployed in the network. Therefore, both evaluations
in SR and LR validate the feasibility of topology inference
through the neighbor identification process.

We also study the topology similarity when nodes’ loca-
tions satisfy ND since it is closer to practical deployment.
The simulation results are illustrated in Fig. 26b. Compared
with Fig. 26a, topology similarity under ND shows similar
variation characteristics. Furthermore, it shows a higher value
in LR. For example, when there are 60 nodes in the network,
topology similarity under ND is 75%, which is higher than 56%
under UD. This implies that a high topology similarity can be
achieved in practical large-region node deployment.

Although Fig. 26 does not give the variation trend of topol-
ogy similarity of LR under UD and ND when the number of
nodes exceeds 120, they both maintained above 90% and close
to 100%. When there are 200 nodes in the network, both two
green curves reach 97%.

7.3. Maximum number of identification

In our simulations, the directed graph is constructed though
the breadth-first search, which represents the worst case of
practical topology inference. Specifically, it takes the most time
to complete the process of topology inference. The time it
takes is largely related to the number of executions of breadth-
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first search. Thus, we study the maximum path length of the
constructed directed graph under the same simulation settings
as before.

Figure 27a shows that the maximum path length of a con-
structed directed graph in SR and LR under UD is 2 and 8,
respectively. That is if there are 120 nodes deployed in LR,
a topology containing 91% nodes can be concluded with no
more than eight neighbor identification processes. For the case
of ND, we find that the maximum path length has a decrement
in LR, as shown in Fig. 27b. The topology inference can
be accomplished within six neighbor identification processes.
Both investigations suggest that it is efficient and fast to infer
topology through such neighbor identification process.

8. RELATED WORK

Neighbor Discovery. As some previous studies illustrated,
neighbor discovery has attracted a lot of research works [3, 30–
33]. Cai et al. present a randomized 2-way neighbor discovery
algorithm to solve the neighbor discovery problem where nodes
are equipped with directional antennas [34]. Chen et al. also
study the oblivious neighbor discovery problem in which the
devices have directional antennas and design a protocol to guar-
antee the order-minimal worst-case discovery delay [35]. Cai
et al. propose a quorum-based neighbor discovery algorithm
to decrease the impact of collisions caused by simultaneous
communication between multiple nodes pairs [36].

Localization. Prior researches about sensor localization are
based on wireless signals [37]. Wu et al. construct an RSS
map of a floor plan to achieve indoor localization with off-the-
shelf WiFi infrastructure and mobile phones [14]. Chen et al.
propose an approach (AutoFi) to automatically calibrate the
localization profile when environment changes [15].

Whereas, another kind of researches devote to localize
sensor nodes by exploiting image information [38]. Barton-
Sweeney et al. propose an algorithm to localize a large number
of sensor nodes by exchanging information among the nodes
equipped with CMOS cameras [39]. Yang et al. present an
accurate indoor localization system (Flash-Loc) in which
surveillance cameras are used to distinguish each person [40].

Visible Light Communication. Advances in VLC have
attracted many interesting researches in recent years [41, 42].
Hu et al. present an LED-to-camera communication system
leveraging tri-LED’s ability to provide a variety of colors
[43]. Similarly, Yang et al. present an LED-to-Camera VLC
system in which three lights working on the same frequency
are utilized to create different brightness levels [44].

Another application of visible light is indoor positioning
[45–47]. Li et al. fabricate an anchor that can take on various
color hues as the observation position changes [48]. They
derive a model that characterizes the relationship of direction
and chips’ color to realize 3D localization. Similarly, Tian
et al. fabricate a lamp cover through which the light projects

a specific color pattern on the floor, then augmenting IMU’s
tracking accuracy [49].

9. CONCLUSION

In this paper, we present LC, a novel image-based neighbor
identification system. Compared with existing methods, LC
provides an effective and fast performance, mainly because
it realizes neighbor identification relying on the image that
has more dimensions than wireless signals. To achieve the
correct identity expression and extraction, LCP is proposed.
LCP also provides a method of measuring neighbors’ relative
positions. Using the self-built testbed, we evaluate adaptability
and robustness of LC under different environmental conditions.
Besides, the feasibility and efficiency of topology inference
through such neighbor identification process are validated by
extensive simulations.
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