W) Check for updates

International Journal of

Distributed
Research Article Sensor Networks

International Journal of Distributed
Sensor Networks

Optimal policy for composite sensing © The Autho(s 202
. . DOI: 10.1177/1550147720927331
w‘t h C rOWd sourcin g journals.sagepub.com/home/dsn
®SAGE

Bei Zhao, Siwen Zheng" and Jianhui Zhang

Abstract

The mobile crowdsourcing technology has been widely researched and applied with the wide popularity of smartphones
in recent years. In the applications, the smartphone and its user act as a whole, which called as the composite node in
this article. Since smartphone is usually under the operation of its user, the user’s participation cannot be excluded out
the applications. But there are a few works noticed that humans and their smartphones depend on each other. In this
article, we first present the relation between the smartphone and its user as the conditional decision and sensing. Under
this relation, the composite node performs the sensing decision of the smartphone which based on its user’s decision.
Then, this article studies the performance of the composite sensing process under the scenario which composes of an
application server, some objects, and users. In the progress of the composite sensing, users report their sensing results
to the server. Then, the server returns rewards to some users to maximize the overall reward. Under this scenario, this
article maps the composite sensing process as the partially observable Markov decision process, and designs a composite
sensing solution for the process to maximize the overall reward. The solution includes optimal and myopic policies.
Besides, we provide necessary theoretical analysis, which ensures the optimality of the optimal algorithm. In the end, we
conduct some experiments to evaluate the performance of our two policies in terms of the average quality, the sensing
ratio, the success report ratio, and the approximate ratio. In addition, the delay and the progress proportion of optimal
policy are analyzed. In all, the experiments show that both policies we provide are obviously superior to the random

policy.
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Introduction can act as the preliminary sensor and decision-maker
before his or her smartphone implements a certain sen-
sing task. For example, users make decisions whether
to take part in an application, and then operate his or
her smartphone to implement the application.'* '

With the proliferation of personal smart devices, such
as smartphone, human is able to capture information/
event from the physical world with smartphones more
easily than before."* Embedded with a rich set of sen-
sors, the current smartphone can support increasing
applications across a wide variety of domains, such as  College of Computer Science and Technology, Hangzhou Dianzi
crowdsensing,'” 7 environmental monitoring,® and  University, Hangzhou, China

social networks.” These applications can be classified .
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Most of the previous works on crowdsensing take the
smartphone into consideration, only a small part works
suggest that crowdsensing should also include user as
the sensor instead of just sensor carrier and operator.'> !’
For example, Wang et al.'® took human as sensor and
studied their behavior’s affecting the sensing data qual-
ity. But there are a few articles noticed that humans
and their smartphones depend on each other. There are
two questions should be focused on the relationship
with humans and their smartphones. The first is how to
describe the relation between the smartphone and its
user during smartphone sensing. The second is how
two improve the performance of the smartphone sen-
sing by exploiting the relation. As we all know, human
has more powerful ability of recognition than the smart
device and plays a key role before the process of smart-
phone sensing. In this article, we propose a framework
to clarify the relation, and then study the performance
improvement of the crowdsensing under a scenario,
where users are willing to have good experience to take
part in the crowdsensing. Since smartphones are under
control of its user, its sensing decision is made after its
user’s willingness. We design the framework as condi-
tional sensing as shown in Figure 1, where each user
takes the action “sleeping” if he or she is not willing to
taking part in the smartphone sensing. The scenario
studied in this article represents a class of common
applications in the participatory sensing, where some
users are asked to implement a certain task, such as to
detect the interesting object/event around them. We
further investigate the case where the users have limited
cost to implement the task, and hope a certain success
implementation probability, denoted by .

Summary of key contributions

The key contributions of this article are listed as
follows:

1. This article studies the relationship between
human and smartphone during the smartphone
sensing, and proposes the framework: compo-
site sensing.

2. We study the scenario of the object detection,
and formulate the composite sensing problem,
that is, how to improve the user experience
under the framework of composite sensing as
the partially observable Markov decision pro-
cess (POMDP). We also design a new scheme,
called composite sensing policy, to solve the
composite sensing problem and get the maximal
overall sensing quality.

3. We provide the theoretical and experimental
analysis for the composite sensing policy. The

observing sensing

User controling , [Phone
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Figure 1. Compound node.

theoretical optimization of the policy is guaran-
teed while the experimental results certificate
the performance of the optimal and myopic pol-
icies we proposed.

Road map

This article is organized as follows. The related works
are reviewed in section “Related work.” Section
“Preliminaries” presents the composite sensing and sys-
tem models. We formulate the composite sensing prob-
lem and map it as the POMDP in section “Composite
sensing problem.” The composite sensing policy for the
problem is designed and the theoretical performance of
the policy is presented in section “Composite sensing
policy.” The performance of our solution is also evalu-
ated by the experiment in section “Experiment results.”
The work of the whole article is summarized in section
“Conclusion.”

Related work

Today’s smartphone is embedded in a number of spe-
cialized sensors, including camera, global positioning
system (GPS), digital compass, and so on. It can sense
the environmental information, and share the informa-
tion with the friend of the smartphone holder or report
to a certain server.'> It has become not only the core
communication device in people’s daily life but also a
smart sensing device for environmental monitoring,
smart transportation systems, social networks, and so
on.'” Its applications are thus widely exploited and are
extended to many more areas than before. According to
the awareness and involvement of the user in the archi-
tecture as sensing device custodians, the smartphone
applications can be classified into two major classes:
participatory sensing (user is directly involved) and the
opportunistic sensing (user is not involved).'” The parti-
cipatory sensing includes both the smartphone and its
holder into the significant decision stages in the sensing
application. One type of relation between the
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smartphone and its holder is the composite sensing pro-
posed in this article.

Participatory sensing

A wide range of environmental information, such as
road traffic, can be sensed and disseminated by ordi-
nary citizens with smartphones. It brings a new way for
the development of many application areas, such as
environmental monitoring and social networks. The
interesting examples include road traffic monitoring,'®
SmartPhoto,'” and Ear-phone.'* Rana et al.'* designed
an end-to-end participatory urban noise mapping sys-
tem called Ear-phone. The key idea of Ear-phone is to
crowdsource the collection of urban noise to people,
who carry smartphones equipped with sensors and
location-providing GPS receivers. In the end-to-end
system, the urban noise is sent to a central server. A
noise map is reconstructed and then is provided to the
end user. In VTrack, some participatory drivers with
smartphone send its location estimated by WI-FI or
GPS to a central server in real time, and the server pro-
vides the real-time routes with the minimal travel time
to users.'” Mohan et al.'® have presented TrafficSense
to monitor road and traffic conditions in a setting
where there are much more complex varied road condi-
tions (e.g. potholed roads), chaotic traffic (e.g. a lot of
braking and honking), and a heterogeneous mix of
vehicles (two wheelers, three wheelers, cars, buses, etc.).
Wang et al'” proposed a framework, called
SmartPhoto, to quantify the quality (utility) of crowd-
sourced photos based on the accessible geographical
and geometrical information (called metadata), includ-
ing the smartphone orientation, position, and all
related parameters of the built-in camera. The sensed
photos are sent to a server by the participators and dif-
ferent rewards are feedback to them because the smart-
phone orientation and position cause the different
sensing qualities. There are increasingly new applica-
tions appearing, such as CrowdAtlas, for generating a
high quality map by crowdsourcing.”® For more details
on smartphone sensing, we refer interested readers to
the survey articles.>'® From the observation from the
related works on smartphone applications, we can find
the following features: (1) sensing result report: many
smartphone applications require the participators to
report their sensed information to central servers; and
(2) human acts sensor: in the smartphone applications
with the participatory sensing, human is a key part of
the systems in these applications, and makes key stages
of the decision to sense the environmental information.
Not all users are willing to be participators and not all
of their sensing results have equal value because the
smartphone types and sensing conditions may be
different.'1¢

Human as sensor

Human’s decision is the necessary part of the smart-
phone applications with the participatory sensing, and
has great affection on the sensing result. For example,
SmartPhoto needs humans to observe the Event of
Interesting (Eol) and then take pictures.!” Most of the
current smartphone sensing applications are based on
voluntary participation.'>?! In these applications,'
humans estimate the incentive reward at first, and then
operate their smartphone to participate if satisfied or they
observe the Eol at first, and then decide to collect and
report the information about the Eol if it is observed and
satisfies requirement.'*'® Zhao et al. have showed that
mobile crowdsourced sensing (MCS) is a new paradigm
that takes advantage of pervasive smartphones to effi-
ciently collect data, enabling numerous novel applica-
tions. They proposed incentive mechanisms which are
necessary to attract more user participation to achieve
good service quality for an MCS application.”’ ND Lane
et al. have surveyed some existing mobile phone sensing
algorithms, applications, and systems. They also discussed
the emerging sensing paradigms, and formulated an archi-
tectural framework for discussing a number of the open
issues and challenges emerging in the new area of mobile
phone sensing research.” The smartphones’ decisions base
on their users’ observation and decision. It is an underly-
ing phenomenon in the applications of smartphone sen-
sing. Wang et al.'® used humans as sensors, and studied
their decisions affecting the sensing data quality.
Although human makes a key decision in the smartphone
applications with participatory sensing, most of the previ-
ous works make simply an assumption on human’s deci-
sion or ignore the humans’ decision. Furthermore, the
participator’s decision and its relationship with its smart-
phone are fairly considered and researched.

Preliminaries

Object, observing, and sensing model

This article concerns a set ¥ of composite nodes to
sense a set of m objects. The object in this article can
be a target, such as the famous building,'” and the
Eol, such as the cellular or the Wi-Fi signal.** As
shown in Figure 2(a), each object is assumed to have an
orientation, and K aspects. Let the parameter 6,
0 €{l,....K}, denotes the aspect that facing one
node. For example, & = 2 means that the second aspect
of the object o; faces the node. When the node takes the
action to sense one 6 of the object’s aspects, the action
results in a certain sensing quality ¢(0), 0 <g(6)<1. In
this article, the sensing quality is defined as the function
of the aspect as given by the following equation

1-0

q(0) =~ 0=1...K (1)
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Figure 2. System model: (a) object model, (b) observing
model, and (c) sensing model.

Each user’s observing range is modeled as a disk as
shown in Figure 2(b) and the smartphone’s sensing
range is modeled as a fan-shaped sensing area in
Figure 2(c). They have the same radius since the user
would not notice the object out of the observing
range. The smartphone can fix a direction to sense
one of the objects in its sensing range as shown in
Figure 2(c). Let the object ID denotes the direction
that the node chooses. The example in Figure 3 shows
that the node has the directions as many as the num-
ber of the objects.

Conditional sensing

In the crowdsourcing applications with the participa-
tory sensing, the smartphone must be under the control
of its user. Each user acts the preliminary sensor, and
implements the composite operation with his or her
smartphone as a whole. We call such a whole as a com-
posite node (node in brief) as shown in Figure 1. In each
node, the wuser can make observing decision
a € {0(sleeping), 1(observing)} to observe the state of
the objects in the composite node’s sensing range, and
then the smartphone can make sensing decision
B = {0(non — sensing), 1(sensing)}. The node imple-
ments the composite sensing: conditional decision-mak-
ing. The sensing decision is based on the observing
decision as shown in Figure 4. By the observing deci-
sions « =0, the node sleeps. Otherwise, the user
observes the objects’ states, and obtains the observa-
tion outcome @; ;(7): 0;(1) = k, where 7 is the time slot
in the period 7. Given the observation outcome ®(7),
the smartphone makes the sensing decision. If the sen-
sing decision is B; ;(7) = 1, the smartphone chooses the
direction o; object to sense. Otherwise, the node turns
to sleep. The observing and sensing decisions compose
the decision space 4, that is, 4 = {«a, B}.

In this following context, we present the composite
sensing from the view of an arbitrary node. The objects
refer to these in the sensing range of the node.
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Figure 3. Each node has four directions to choose: (a) oy, (b)
07, () 03, and (d) o4.

Sleeping
Observing

(Sleeping |
( Smartphone HE Slecping

| Sensmg |

Figure 4. Composite detection.

System model

This article studies the scenario where the nodes and
objects are static and uniformly randomly deployed in
the interested area. With an additional server, these nodes
and objects compose the composite sensing system. In
each time slot, each object o; is in either of two states: dis-
appear and appear. The object state is clarified by the fol-
lowing two concepts: object state and system state.

Definition |

Object state. The object state indicates the appear-
ance of an object o; in each time slot 7, and is denoted
by z;(7), where z;(7) € {0(disappear), 1(appear)}.

The design of the optimal observing and sensing
decision uses the definition of the object state. When an
object is in the state: disappear, that is, z;(7) = 0, it can-
not be observed by any node. When the object is in
the state: appear, that is, zj(r) = 1, it can be observed
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Table I. Symbol and meaning.

Symbol Description Symbol Description

% Compound node ] Probability of reward

0 Object 0 Object’s aspect

m Number of objects s System state

B Belief vector M Belief state

II State space z Object state

T Time slot w New belief vector

p Probability P Big probability

a User decision B Smartphone decision

A « set v Vector of

F Value function c Composite decision

Q Q function u Observing, report result
g Node group ) Object state vector

E Expectation n Node sensing direction
K Number of aspects y Success report probability
q Sensing quality I4 Threshold for y

r Reward () Element of the vector

T Period @ Element of ®

and one of its K aspects faces one node. Assume
that each object has the equal transition probability
among the disappear state and the K aspects, that is,
p(0'10) = p(6]0"), and p(z = 0|0) = p(8|z = 0), and its
state transition is independent of other objects. Suppose
that there are m objects around the node. The definition
of the system state is given as below.

Definition 2

System state. The system state is the collection of the
states of the m objects, and is denoted by s(7), where
s(r) = {z(1),j =1, ...,m}.

Given a sequence of time slots 7 € T, this article
assumes that the system states s(7) form a Markov chain
with the state space IT = {0,1}". To achieve reward,
each node observes and senses the objects around it,
and then reports the sensing results to the server. Let
'y;((i = k) denotes the report of the node v; for the object
o; when o;’s kth aspect faces the node v;. The sensing
quality of the report yi(0 = k) is thus ¢i(6 = k). If the
report is accepted by the server, it returns the acknowl-
edgment of the node with a certain reward. In this arti-
cle, the server adopts the non-separable sensing quality
rule in equation (2) as the rule to choose the reporting
from the nodes. By the function, the server accepts the
maximal sensing quality for the same object among the
nodes’ reporting for the same object

g = maxgj(6 = k) 2)

where ¢ is the sensing quality reported by the node v;
for the object o;, and there may be more than one node
sensing the same object o; simultaneously. By the sen-
sing quality rule in equation (2), the report y}(ﬁj =k)

o )

gt lq Observation)

(D broadcast

@) observing

: @ |\ _decision | 1 _Statistics : )
Server <= Object) @ sensing
o]t Update \“4_( Sensing | , @ report
| belief vector | ! decision] [="- eeeeet
”””””” ) ® ®) reward

Figure 5. The composite sensing system.

can be successful if any other report yj’ (6; = k') for the
same object o; has no aspect with higher quality, that
is, k' <k. Let y,(0; = k) € {0, 1} denotes the reported
state of the object o;, which means that there is no
report with the aspect higher than k if y(0 = k) = 1.
Otherwise, v;(6 = k) = 0. Most of symbols and their
meaning are summarized in Table 1.

Composite sensing problem

This section presents the composite sensing process
with the goal to maximize the overall sensing quality,
and then maps it as a POMDP.

Compound sensing system

The structure of the composite sensing system, illu-
strated in Figure 5, implements the crowdsourcing
task, which is implemented including four parts: task
broadcast, composite sensing process, report, and
reward.

Task broadcast. The application server broadcasts some
advertisements to the users and to attract them to
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participate in the task: to sense the objects in their sen-
sing ranges. After the node accepts the task, it imple-
ments the composite sensing process to maximize the
reward returned from the server.

Composite sensing process. Each node implements the
composite sensing process, which is composed of condi-
tional decisions made in a series of time slots. In each
time slot, the observing decision «(7) is first made
according to the historical observation and decisions,
stored in the historical information vector H(7). Based
on its outcome, the sensing decision B(7) is then made.

Observing decision. At the beginning of each time
slot 7, the node makes the observing decision. If the
observing decision is made to be sleeping, the smart-
phone has to choose the sleeping sensing decision either
in this slot. Otherwise, the user chooses one direction,
that is, one object o;, to observe. If the object’s state is
appearance, that is, zj(7) = 1, the node can observe its
orientation as shown in Figure 2(b). After the observa-
tion, the node obtains the observation outcome: the
object state zj(t) and its orientation 6;(7). Given the
system state s(7) = s and the observing decision o = 1,
the conditional PMF (probability mass function) of
observation outcome, 6;(t) = k, for the object o; is
given by

A
Po(kls) = p{6;(r) = kls(7) = s}
[ p(6;(r) =k|z7=1), ifz=1thenk>0 (3)
0, ifzg=10,then k =0

where £ = 0 indicates that no aspect cannot be observed
when the object o; disappears, and p(6;(1) = k|z; = 1) is
the conditional probability that the observing outcome
is 0;(t) = k when the object stateis z; = 1.

Sensing decision. After the observing decision for the
object o;, the node makes the sensing decision B,(7) in
the slot. If the observing decision «(7) = 0, the sensing
decision must be sleeping, that is, 8,(7) = 0. Otherwise,
the smartphone makes the sensing decision according
to the observation outcome: 6;(1) = k. The node makes
the sensing decision to sense the object o;, that is,
B;() = 1, with the following probability

po(B(r) = 1) = {p(ﬁjm - ’e,m ) it =0
(4)

where the conditional probability p(B;(1) = 1|0;(1) =
k) € 10, 1].

Report. After the sensing decision is made to achieve
the sensing result g(6;(7)), the result is reported to the
server. The server chooses the report with maximal sen-
sing quality for the same object by the rule given in
equation (2), and the server feedbacks the reward to
the reporting node. In this case, the node’s report is
called a successful report. Denoted the successful report
for the object o; by (k) when the observation outcome
is 0(t) = k and k>0. The node with the successful
report can thus obtain some reward from the server,
and counts its successful report probability, denoted by
pr(y(k)). Recall that the successful report can be
obtained only after the observing decision, sensing deci-
sion, and report are taken. So the successful report
probability p,(y;(k)) can be formulated as the following
equation

W, (k) = p(y;(k) = 1]B;(7) = 1)
p(0;(7) = k‘zj = l)p(zj = 1ls(z = 1]s(r) = s) = s)
= ps(B;(7) = D)po(kls)p(z = 1ls(7) = )
(5)

where the last equality is obtained by equations (3) and
“4)

p(y(k) = 0[B;(r) = 1) = L =p.(y(k))  (6)

Reward. The reward, denoted by r(7), for the successful
report is defined to be a monotonically increasing func-
tion with the aspect. This article uses the sensing quality
as the reward, which means that the successful report
with higher sensing quality obtains higher reward
according to equation (1). Recall the definition of the
composite sensing process in section “Conditional sen-
sing,” the reward can be obtained only after the obser-
ving decision «a(7) =1 and the sensing decision
B;(7) = 1. Then, the immediate reward r(7) in slot 7 can
be given by

r(r) = a(r)B;(r)q(0 = k), k=1,...

Notice that the node chooses only one object to
sense each time if its sensing decision 8>>0. It is willing
to choose the object that can result in the sensing qual-
ity and probability of the successful reporting as high
as possible. The objects have their own states: appear
or disappear, which compose of the state space I1. They
switch between the states from one time slot 7 to next
time slot 7 + 1 with some probabilities pyy.

K (7)

Convert to POMDP

The composite sensing process can be mapped as the
POMDP. In the process, the node observes only a part
of the objects around it, and the report result cannot be
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directly known after it reports the sensing result to the > Mg (T)p(s]s")po (kls)
server. The system states thus cannot be fully observa- p(r+1)= sell )

ble. In the following, this article formulates the compo-
site sensing process as the POMDP by a tuple
(IL,®,4,P,q):

e I is a set of objects’ states in the node’s sensing
range.

® O is a finite set of sensing and report results, that
is, 0,y € ©.

e 4 is the decision space, that is, 4 = {a,B},
Va € {0,1},8=1{0,1, ...,K}.

® Pis a set of the system state transition probabil-
ities: P = {p(s'|s)}, Vs, s’ € I

o g4(0): AXTI— (0,1] is the
function.

sensing quality

Belief vector. In the composite sensing process, the node
makes the decision according to the historical informa-
tion H(7) at the beginning of each time slot. The histor-
ical information vector H(t) is updated in each time
slot 7. As time goes on, the size of H(1) grows quite big.
Smallwood et al.>* showed that the conditional prob-
ability, denoted by B(7), of the system states of the
objects around the node based on its decision and
observation history H(7) can be a sufficient statistic of
these objects’ historical states. B(r) is named as the
belief vector of the node for the states of the objects
around it at the end of each time slot 7 — 1, and is
defined as B(7) 2 [g(7)] e+ Each element u, € B(7),
called belief state, is the conditional probability (given
the observing and sensing history) that the objects’ state
is s at the beginning of slot 7 + 1 prior to the state tran-
sition. B(t) can be updated based on B(r — 1) and the
decisions and report results in the slot 7. We introduce
an updating function T to implement the updating of
the belief vector, that is, B(t) = T (B(1 — 1)|®(7), A(7)).

This article adopts a reward-based updating function
T: B(r+ 1) =T(B(1),0(7), A(T), ¥(1)). Based on the
Bayes’ rule, the update of B(t + 1) is calculated in two
cases. When the observing decision makes the node to
sleep, that is, & = 0, the belief vector is updated based
solely on the underlying Markovian model of the object
state, that is, B(t + 1) = T7(B(7)|a = 0). The belief ele-
ment is updated by the following equation

po(m 1) = > py(mp(sls’) (8)

s'ell

When the user takes the observing decision a(7) = 1,
it can observe the system state s(7) = z(7) with the prob-
ability as equation (3). The information state can be
updated by the Bayes’ rule:** when the node is in the
state s" at slot 7, the belief state is the probability that
the state is in the state s at slot 7 + 1

P(vls, (. B))

where the denominator is a normalizing constant and is
given by the sum of the numerator overall values of
s € II as the following equation

2 g (T)p(sls")ps (ks)

s'ell

2 g (T)ps(kls")

s'ell

p(r+1) = (10)

where p,(k|s) is given according to equation (4).

Objective. The composite sensing policy is a sequence of
decision couples: (a(7), B(7)), 7 € T. The optimal pol-
icy, denoted by (a(r),B(r))", 7€ T, is to maximize
the expected overall sensing quality in 7 under the con-
straint of the successful reporting probability threshold
. It is equivalent to finding the optimal policy for the
finite constrained POMDP. Recalling the immediate
reward given in equation (7), the goal of the optimal
policy is given by

q(T) = maxE Zr(f)B(O)] (11)
st. p(yk)=¢ WeVk=1,....K (12

where B(0) is the initial belief vector for the object
states, and ¢ is the threshold for the success report
probability.

Composite sensing policy

Some previous works, such as the one-pass algorithm,**
can carry out the sequence of the optimal decision. The
computation complexity required to obtain the optimal
decision increases exponentially with the size of the
state space, and can be very high for the general
POMDP.* One of the alternative methods for addres-
sing this problem is to design the myopic policy.*
Myopic policy focuses on the immediate reward and
ignores the impact of current policy on future rewards.
Generally, the myopic policy is suboptimal. In this sec-
tion, we explore some specific properties of the compo-
site sensing system: monotonicity and the independence
between the action and object states. With these prop-
erties, the computation for the optimal policy given in
this section can be simplified.

Value function

The key step of making the composite decision is to
measure how good the previous decision is. Value func-
tion can express the objective in equation (11) explicitly
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as functions of the belief vector B and the observing
and sensing decision (a, 8). Let F(B(1),A4) denotes the
value function, which is the maximum expected total
reward that can be accumulated starting from 7 given
the belief state B(7). To make the decision (a,B) in
each time slot 7 can accumulate the reward started
from 7 with two parts: the immediate reward given in
equation (7) and the maximum expected future reward
F(B(t + 1),4). Considering all possible system states
s € II and the successful report probability in equation
(5), and then maximize over all possible decisions in A4,
we can arrive the value function in the following
equation

Fr(B) = (Eg%éA;MS(T)r(B’ (a. B))
1
Fi(B)= max Y ul(r) Y. p(y(k)
(. B)ed v =0
[’Yj(k) (B’ <a5 >) + F:+ 1(7 B’ OZ,B>))], dvreT
(13)

where the first term in the right of the equation denotes
the expected immediate reward (B, 4), and the future
reward F,(B(t + 1)) can be calculated by the future
belief vector B(r + 1) with the Bayes’ rule.’*?’ The
immediate reward r(B,A) is achieved in current time
slot by taking the sensing action, and is given as

r(B,4) = (v|s)g;.

Optimal composite sensing policy

This section analyzes the properties of the composite
sensing process, which includes: (1) monotonicity of
value function and (2) monotonicity of success report
probability. With these properties, we can obtain an
explicit optimal design for the composite sensing pro-
cess and a deterministic optimal sensing policy in
Lemma 2, and observing policy in Lemma 3.

Lemma |

Monotonicity of success report probability. Given the sen-
sing decision B =1, the success report probability
pr(y(k)) increases with the observing outcome 0(7) = %,
that is, p.(f(k')) = p.(if;(k)) for k' = k.

The proof of Lemma 1 is referred to Appendix 1.

Theorem |

Monotonicity of value function. The value function
F(B,0) is monotonically increasing with the aspect 6,
that is, F(B,0)=F(B,0) for ¢ =6. The proof of
Theorem 1 is referred to Appendix 1.

Recall that the object of the composite sensing pro-
cess is to maximize the overall reward under the con-
straint of the successful sensing probability as given in

equation (11). If there is no constraint, the node would
always make the composite sensing to wake up in each
time slot so as to maximize the overall outcome. With
the constraint given in equation (12), the composite
sensing must be decided carefully. Since the successful
report possibility increases monotonically with the
aspect 6 as claimed in Lemma 1, there must be an
aspect, denoted by 6(r) = k, such that the following
condition is satisfied given the observing outcome
0(7)>0

0 =F:p(y,(F)=¢ and p(y,(F—1))<¢ (14)

According to equation (6), the successful sensing
probability is affected by both the observing and sen-
sing decisions. By Lemma 1, the sensing decision 8 = 1
with higher the observing outcome 6(7) = k can result
in higher success report probability p(wj(k’ )). According
to Theorem 1, the value function monotonically
increases with the success report probability p(i;(k")).
Therefore, we can make a threshold-structured optimal
sensing decision, which is given by the below lemma.

Lemma 2
Optimal sensing decision. Given the observing outcome
0(7) = k, the optimal sensing decision B is given as

follows
— 1’
s ={y

where the threshold aspect & is defined in equation (14).

The next is to design the optimal observing decision,
which chooses the best object to observe in each time
slot since there are m objects. It is easy to find that there
is definitively no chance to obtain the reward if the
object is in the state of disappearance, that is, z = 0.
Lemma 2 shows the optimal sensing decision, that is,
the sensing decision must be taken only if the observing
outcome is O(k) = 1, k=k in order to satisfy the con-
straint in equation (12). For the constraint composite
sensing process, the observing decision has to choose
the object, whose state is z = 1 and the aspect 6(k) = 1,
k= k. The threshold of the aspect 6(k) = 1 divides the
object states into two groups denoted by z =1 and
Zz = 0. In the first group z = 0, the object states includes
z=0orz=1and the aspect 8(k) = 1, k<k. In the sec-
ond group z = 1, the object states includes z = 1 and
the aspect 6(k) = 1, k=k. For each object o;, we also
define two transition probabilities: o; and ¢;, between
the two group states, as follows

if k=k
otherwise

(15)
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The above two probabilities can be calculated and
updated from the transition probability of the system
states given in equation (9) or (10)

aj(t) = p(z=0(k),s(t + 1)|z = 6(k'),s(r))

B

M-
(\gs

k=kk

k

1

" oz = 0(K), 5(r + 1)z = 0(K), 5())

[M]~

d)j(T) =

/

>~
=
=~

(17)

Because one object’s states are independent of oth-
ers’, the probability that the object o; is in the group
state z(7 + 1) =1 can be updated according to the
observing outcome in previous time slot by the follow-
ing equation

pEr+1)=1)

g, ifOlj: 1,/62/_(
= ¢; ifa; = 1;k<k
oy(1) + (¢; —0y)p(z(7) = 1) ifa; =0
(18)

We have the following lemma to determine the opti-
mal observing decision.

Lemma 3

Optimal observing decision. Suppose that there are m
objects. Given the observing outcome in the previous
slot 7 — 1, the optimal observing decision is to observe
the object with the [min{o,¢}, max{o,¢}]. The
optimal observing decision in time slot 7 is to choose
the object o; to observe, where o; = arg, max
k), Vk=1,... K.

Proof. According to the definition of the group state
Z(t + 1), the observing decision lets the node active
when the object state is z(r) = 1 and () = k, k=k.
Thus, the constraint is satisfied by the observing deci-
sion. Thus, the object state, which results in the maxi-
mal value function, must be contained in the group
state.

Next, we prove by induction that the value of the
observing decision given in Lemma 3 is maximized.
According to the system model in section “System
model,” the object states have the equal transition
probability among its states. The transition probability
does not change with time. When the observing deci-
sion makes the node to sleep, that is, a(7) = 0, there is
no chance to outcome any observing result by equation
(3), that is, p,(k|s) = 0. Thus, p = 0 given in equation
(6). So F(p,s) = 0) = 0 in this case. When the observing
decision makes the node to observe the object, that is,
a(7) = 1, the belief vector can be updated by equation

(9). Thus, we have B(t + 1) = 7(B(7)|a = 1). Since the
observing decision in Lemma 3, the probability
p(z; = 1|s(t) = s) in equation (6) for the object state in
the group state Z=1 can be maximized. With
F(p,s) = 1. For each object, the transition probabilities
between any two states are equal, that is,
p(zilz) = p(zj|z;). Therefore, the observing decision
given in Lemma 3 is optimal.

Optimality of myopic policy

A myopic policy does not consider the impact of the
current action on the future or long-term reward, and
focuses solely on maximizing the expected immediate
reward. It is usually suboptimal for the general
POMDP. The myopic policy need not estimate the
future reward so that the computation complexity can
be reduced. In this article, the myopic policy only cares
the impact on the next time slot so we modify the value
function as the following equation

(19)

The description of the myopic policy is quite similar
to the optimal one except that equation (13) in step 5 of
Algorithm 1 is replaced by equation (19).

Algorithm |. Optimal policy.

Input: Initial belief vector B(0) and £.

Output: Overall quality q(T).

I: List all possible information states (B, p(;(k))),
veV,k=1, .- K, that each node may go through. Let B
include all such states such that the constraint in inequality
(12).

2: Let = 0 for all states (B, p(v;(k))) with p.(;(k))>{,
veVk=1,---,K

3: while 7< = T do

4. if B is nonempty then

5 Compute the value function for the state

(B, pr(v(k))) € B with equations (9) and (13);

6: Get the maximal quality of all object and remove its
state from set B3;

7: endif

8 rt=7+1

9: end while

Experiment results

In this section, we conduct numerical and simulation to
verify the performance of our optimal and myopic pol-
icy by comparing it with a randomized algorithm,
which is just to select some objects in each round ran-
domly. We numerically analyze the impact of various
parameters such as the average quality, sensing ratio,
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Figure 6. Convergence of the optimal, myopic, and random policies: (a) average quality, (b) sensing ratio, (c) success report ratio,

and (d) approximate ratio.

success report ratio, and the algorithm approximate
ratio under proposed algorithms in terms of the num-
ber of iterations and different thresholds. Besides, we
give the progress proportion and delay analysis of the
optimal policy.

Evaluation setup

To better validate the performance of our proposed
algorithms, we build a test bed and conduct field
experiments. Our evaluation field is divided into three
disks according to composite node vi,v,,v3 with its
observing range. Seven objects are uniformly and ran-
domly deployed in the field. The possible states of the
seven objects in each time slot are: appear or disappear.
The state in different time slots has no effect on each
other. If an object appears, the orientation is also ran-
domly distributed, and the orientation in different time
slots is also independent of each other. In the following
Figures 6 and 7, we consider the average quality, sen-
sing ratio, success report ratio, and the algorithm
approximate ratio as metrics for evaluation under vari-
ous parameters: the number of iterations and
thresholds.

Performance comparison

Average quality. Figure 6(a) shows the average quality
obtained by the optimal, myopic, and randomized poli-
cies, respectively, under the different number of itera-
tions and fixed threshold value ¢ = 0.1. After almost
200 iterations, the optimal policy gets a stable average
quality, about 1.19. Besides this, the average quality
achieved by the myopic policy is about 0.88 after nearly
500 iterations. In contrast, the average quality of the
random policy is about 0.73 after 500 iterations, which
is much lower than other policies as shown in Figure
6(a).

As shown in Figure 7(a), we evaluate the average
qualities obtained by the optimal and myopic policies
compared with the random policy when we set various
thresholds and keep the fixed 1500 iteration times. With

the threshold increasing, the optimal strategy always
maintains a good expectation value of the average qual-
ity about 1.2. In contrast, myopic and random policies
show insufficient performance. When the threshold is
between [0,0.3], the myopic policy gets the average
quality about 0.92 and the random policy gets it about
0.79. When the threshold is greater than 0.3, their aver-
age qualities drop badly.

Sensing ratio. As mentioned in equation (12), when the
success report probability is less than the threshold ¢,
we will not take the sensing action in the optimal and
myopic policies. Figure 6(b) counts the ratio of the
number of sensing actions to the number of observing
actions with the number of iterations increasing from
0 to 1700. It reflects the sensing probability obtained
by the optimal, myopic, and randomized policies after
observing objects. Again, we set the threshold with the
fixed value ¢ = 0.1. After almost 300 iterations, the
optimal policy gets a stable sensing ratio, about 84%.
Besides this, the sensing ratio obtained with the myopic
policy is about 80% after nearly 20k iterations. In con-
trast, the sensing ratio of the random policy is about
68% after 300 iterations, which is much lower than
other policies as shown in Figure 6(a).

As shown in Figure 7(b), we evaluate the sensing
ratio obtained by the optimal and myopic policies com-
pared to the random policy when we set various thresh-
old values and keep the fixed number of iterations, that
is, 1500. The optimal policy always maintains a good
sensing ratio with about 80%. In contrast, the myopic
policy and random policy show insufficient perfor-
mance. When the threshold is between [0, 0.4], the sen-
sing ratio gets by the myopic policy is about 65% and
the sensing ratio gets by the random policy is about
54%. When the threshold is greater than 0.4, their sen-
sing ratio performance drops badly.

Success report ratio. As mentioned in equation (2), the
server only accepts the maximal sensing quality for a
same object among the nodes’ reporting for it.
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Figure 7. Performance under different thresholds with fixed 1500 iterations: (a) average quality, (b) sensing ratio, (c) success report

ratio, and (d) approximate ratio.

Therefore, the success report ratio is also one of the cri-
teria to evaluate how good a strategy is. Figure 6(c)
counts the ratio of the number of success reports to
that of observing actions with the number of iterations
increasing from 0 to 1700. We set the threshold value
to be 0.1. It reflects the success report probability
obtained by the optimal, myopic, and randomized poli-
cies after observing objects. After almost 300 iterations,
the optimal policy gets a stable success report ratio
about 82%. Besides this, the success report ratio by the
myopic policy is about 79% after nearly 400 iterations.
In contrast, the success report ratio of the random pol-
icy is about 67% after 300 iterations, which is obvi-
ously lower than other policies as shown in Figure 6(c).

As shown in Figure 7(c), we evaluate the success
report ratio obtained by the optimal and myopic poli-
cies compared to the random policy when we set vari-
ous threshold values and keep the fixed 1500 iterations.
The optimal strategy always maintains a good success
report ratio about 84% and the myopic policy shows
insufficient performance with 79% success report ratio.
However, the success report ratio of the random policy
is only about 68%.

Approximate ratio. The approximation ratio can measure
the performance difference of our policies. It reflects
the performance of the optimal, myopic, and rando-
mized policies clearly. Again, we set the threshold value
of  to be 0.1. In Figure 6(d), the blue curve shows the
approximate ratio between the myopic and optimal
policies with the number of iterations increasing from
0 to 1700. It is obvious that the performance of the
optimal and myopic policies goes stable after nearly
200 iterations. The approximation ratio of the myopic
and optimal policies is about 78% finally. The orange
curve shows the approximation ratio between the ran-
dom and optimal policies with the number of iterations
increasing from 0 to 1700. It is obvious that the perfor-
mance of the random and optimal policies gets stable
after nearly 200 iterations. The approximation ratios of
the myopic and optimal policies are about 73%. The
green curve shows the approximation ratio between the

random and myopic policies with the number of itera-
tions increasing from 0 to 1700. After nearly 150 itera-
tions, the performance of the random and myopic
policies gets stable. The final approximation ratio of
the myopic and optimal policies is about 77%.

As shown in Figure 7(d), we evaluate the approxima-
tion ratio among the optimal, myopic, and randomized
policies when we set various thresholds and keep the
fixed number of iterations, that is, 1500. In Figure 7(d),
the blue curve shows the approximate ratio between the
myopic and optimal policies with the threshold varies
between [0, 0.5]. The approximation ratios of the myo-
pic and optimal policies are about 78% and relatively
stable in the interval [0,0.35]. When the threshold is
greater than 0.35, the approximation ratio suddenly
drops to around 40%. The orange curve shows the
approximation ratio between the random and optimal
policies with the threshold varies between [0,0.5]. The
approximation ratio of the random and optimal poli-
cies is about 60% and relatively stable in the interval
[0,0.4]. When the threshold is greater than 0.4, the per-
formance suddenly drops to around 20%. The green
curve shows the approximation ratio between the ran-
dom and myopic policies with the threshold varies
between [0, 0.5]. The approximation ratios of the ran-
dom and myopic policies are about 70% and relatively
stable in the interval [0,0.45]. When the threshold is
greater than 0.45, the performance suddenly drops to
around 30%.

Delay and progress proportion. To review the complex per-
ceptual system in Figure 5, the server goes through five
steps from the start of broadcasting to feedback
rewards to the object. In this experiment, we use delay
to represent the time from the beginning of the broad-
cast to the end of the feedback. As shown in Figure 8,
we observe that the delay of the optimal policy
increases significantly as the number of objects
increases. In addition, after several hundred iterations,
the delay of the optimal policy is basically stable. In
this experiment, it is assumed that we need the optimal
strategy to complete the calculation of 1500 iterations.
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Figure 8. Delay of the optimal policy with 1500 iterations.

The progress proportion represents the percentage of
the number of completed iterations to the total 1500
iterations under a particular timestamp. As shown in
Figure 9, we observe that with the increase in the num-
ber of objects, the time to complete the fixed 1500 itera-
tions of the optimal policy is significantly extended.

The main trends in the results are summarized as
follows:

e The average quality, sensing ratio, success report
ratio, and other indicators obtained by the opti-
mal policy and myopic policy tend to be stable.

e Compared with the myopic policy, some indica-
tors of the optimal policy reached the stability
earlier.

e The effect of threshold setting on myopic policy
and random policy is much greater than that of
optimal policy.

e With the increase in objects’ number in the
experimental scene, the delay increases signifi-
cantly and the progress proportion slows down
significantly.

Conclusion

This article observed the phenomenon of composite
sensing with user as sensor in crowdsourcing. The phe-
nomenon usually happens and has not been well stud-
ied. We thus proposed the framework: composite
sensing, and then map it as a POMDP problem. The
composite sensing policy is proposed and analyzed the-
oretically and experimentally. The theoretical optimiza-
tion of the policy is guaranteed. In this article, we
discuss the case where the smartphone can choose one
direction to sense in each time slot. We take another
case as a future work, where the smartphone may
choose one or more directions to sense in each time
slot. Compared with traditional methods, the use of
this method in large-scale environmental data has yet
to be verified and optimized.

0.8

0.6
+3 objects
04 7 objects

0.2 =15 objects

progress proportion (%)

024 08 1 13 1.6 25 37 48 5

Time stamp (10~ ms)

Figure 9. Progress proportion of the optimal policy.
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Appendix |

Proof for Lemma |

Lemma 4

Given the sensing decision 8 = 1, the success report
probability p,(y(k)) increases with the aspect 6 = £, that
is, p(y(k') = 1B;(r) = 1) =p(y;(k) = 1|B,(r) = 1) for
K=k

Proof

Recall that the nodes and objects are uniformly and
randomly deployed in the interested area in section
“Preliminaries.” Suppose there are » nodes, which can
sense the same object o;. The o;’s direction is random
and fixed in an arbitrary time slot. In each aspect, there
are n/K nodes on average. There may be more than
one node in each aspect. The nodes in the same aspect
of the object o; have the same sensing result and same
report result. Denote the node in the kth aspect by
vi, k=1,...,K, and the reporting probability of the
node v; by py. The node in the lower aspect of the
object can sense the object with higher quality accord-
ing to the object model in section “Object, observing,
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and sensing model.” When the node v; can obtain the
successful report, the server does not accept the reports
of the other nodes v;,i<k. So the probdblhty that v;’s
report is successful is p(y/|k) = [[F2", (1 — po)px. It is
easy to notice that p(y/|k) is non-increasing with k since
0 <p; =<1. Notice that the lemma also holds when there
is less than one node on average in each aspect.
According to equation (5), this lemma is correct.

For the states s; and sy with k=X’ there is at least
one object under the state s;. Its aspect facing the node
is lower than the lowest aspect of the objects under the
state s according to Definition 2. By the composite
sensing policy, the node senses only one object each
time. It refers to sense the object with the lowest aspect
in s; rather than that under the state s, and then have
higher successful reporting according to the above
proof.

Lemma 5

Monotonicity of success report probability. Given the sensing
decision B = 1, the success report probability p,(y(k))
increases  with the aspect 6=k, that is,

(W (k") = p,((k)) for k' = k.

Proof

Recall the assumption in section “System model.”
When the object o; appears, that is, z; = 1, any aspect
of the object may face the node with the same probabil-
ity, that is, p(0]0") = p(6'|0). For two aspects 0,(1) = k'
and 6;(t) = k, we thus have

p(0)(7) = K|z = 1)p(z = 1is(7) = 5)
_P(Gj( ) = klz; = 1)p(z = 1]s(7))
According to the definition of the successful report

probability in equation (6) and Lemma 1, we can prove
the lemma.

(20)

Proof for Theorem |

The value function in equation (13) contains two parts:
the expected immediate reward and future reward. The
two parts have the property of monotonicity with the
aspect. We thus can prove the Theorem 1 by the follow-
ing lemmas.

Lemma 6

Monotonicity of immediate reward. Given the sensing
decision B = 1, the expected immediate reward »(B, 4)
monotonically increases with the aspects 6.

Proof. In the value function in equation (13), the
expected immediate reward is given the following
equation

Y v(u()r(B.(a

E[r(r)|B(7), 4] = ) _ py(7) .B))
sell )/j‘k(T) =0

(1)

Consider two composite decisions: 4 = (&, ) and

A" = («/,B') such that the observing outcomes under
the two composite decisions are 6(k) and 6(k), k=K',
respectively. Notice that the reward is zero when
¥, k(1) = 0. Comparing the expected immediate reward
resulting from the two decisions, we have

E[r(7)|B(7).4] = E(r(7)|B(7), 4)
= > w(Mi(yu(r) = 1)r(B. 4)
sell
=3 (M () = (B4
sell
= > w{W(v(r) = Dr(B.A) = d(yyp(r) = 1)
sell

(B, A} =0
(22)

This finishes the proof.

Recall that the server chooses the report with the
maximal sensing outcome by sensing quality rule in sec-
tion “Related work.” The fail report cannot obtain any
immediate reward, that is, the accumulated value
F(B(7)) cannot increase if the report is not successful in
7. We thus have the following claim.

Claim I. Suppose that the accumulated value up to time
slot 7 + 11is F(B(7 + 1)), and the accumulated value up
to 7 is same to that in 7+ 1 with probability of
p(y;(k) = 0|B;(m) = 1) if the report y(k) is implemented,
where p(y;(k) = 0|B;(1) = 1) is given in equation (6).

Theorem 2

Monotonicity of value function. The value function
F(B,0) is monotonically increasing with the success
report probability p,, that is, F(B(7),p,) = F(B(7),p,)
for p. = p,.

Proof. We prove the theorem by mathematical induc-
tion. From the value function given in equation (13),
we can induce that the theorem is correct by Lemma 6.
Suppose that the theorem is correct for every slot 7>7,
that is, for two success report probabilities p, = p’, the
following inequality is satisfied

F(B(70).pr) = F(B(70). ;)

Since the failed report cannot obtain any reward
according to Claim 1, equation (23) also indicates

(23)

F(B(70).1 = py) = F(B(ro).1 = p',) (24)
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Comparing two value functions with the two success The last second inequality is because p, = p/. The last
report probabilities p, and p!, we have inequality is because of equations (23) and (24). This
finishes the proof.
F(B(7o).pr) = F(B(70).P',)

= Z[.LS(T){prI”(B(To),pr) _p/rr(B(TO),pV’)

sell
+ Z [p-Fr+1(T (B, pr)) — prFr+ 1((T(B, D))}
¥(k) =0
1
BZI‘LS Z [pF7+] (B(to + 1).p,))
sell v (k) =

—p F, 1(T(B(To +1),0,))]
=N () peFr+ 1(T(B(ro + 1),p,))

sell
+ (1 =py)Fr+1(T(B(ro + 1),1=p,))
— P Fr  \(T(B(ro + 1),7,))
—(1=p)F +1(T(B(to + 1),1-p")))]
=3 w (D) Fr o 1((T(B(ro + 1).1,))

sell
+ (1 =p)F 1(T(B(ro + 1),1=p,))
— P Fr o 1((T(B(mo + 1),7,))
— (1 =p )F e ((T(B(ro +1),1 =p',))]=0

(25)





