
Distributed Trip Selection Game for Public Bike
System with Crowdsourcing

Jianhui Zhang∗, Pengqian Lu, Zhi Li, Jiayu Gan
College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018 China

∗Corresponding author e-mail: jhzhang@ieee.org

Abstract—Public Bike Systems (PBSs) offer convenient and
green travel service and become popular around the world.
In many cities, the local governments build thousands of fixed
stations for PBS to alleviate the city traffic jam and solve the last-
mile problem. However, the increasing use of PBSs leads to new
congestion problems in the form that users have, such as no bike
to rent or no dock to return the bike. Further, users wish to receive
assistance on deciding how to select bike trips with minimal
time cost while taking congestion into account. Meanwhile,
crowdsourcing attracted increasing attention in recent years. This
paper applies it to help users share information and select bike
trips before the bikes or docks are occupied. An interesting and
important problem is how to help users select bike trips so that
the time consumed on the trips can be minimized. We model the
problem as a Bike Trip Selection (BTS) game which is shown to
be equivalent to the symmetric network congestion game. This
equivalence allows us to design a BTS algorithm by which the
users can find at least one Nash Equilibria (NE) distributively.
Furthermore, this paper evaluates the algorithm based on real
datasets collected from the PBS of Hangzhou City in China. We
also design a BTS system including an Android APP and a server
to conduct the experiment for the distributed BTS algorithm in
practice.

Index Terms—Bike Trip Selection; Public Bike System; Crowd-
sourcing; Game Theory

I. INTRODUCTION

As a green and convenient transportation mode, Public
Bike System (PBSs) have been widely promoted by many
governments around the world, such as in Chicago and New
York of USA [1][2], many cities of China [3]. It brings great
benefit to last-mile transportation in busy cities. At the same
time, PBSs also lead to new and interesting research questions
such as bike mobility prediction [3] and bike lane planning [4].

PBSs have some fixed bike stations, each of which has a
limited amount of docks or bikes, in which users can rent or
return bikes. As the use of PBS grows, congestion will occur
in the form that a user may not be able to rent or return her
bike after a walking or biking to the bike station. For example,
in Figure 1, the bike stations A and C have no available
bike and empty dock so that user cannot rent bike from A
or return bike to C. One interesting and practical challenge
is how user can find the bike trip to avoid getting into this
congestion situation with no bike to rent or no dock to return
bike. Some studies in the literature suggest to estimate the
resource requirement for bikes and docks [3] or to redistribute
the unbalanced bike resources by transporting bikes among
stations with trucks [5][6]. These methods cannot help user
find available bike and empty dock in time. Another challenge

 !"#$%&'&!()

*'+"!),$%#,-#)&

 !"!),$%#,-#)&

.(-/+#&#$0!"#$&1!/

!

"

#

 !"#$%&'&!()

$

%

Fig. 1. An example for bike trip selection in PBS. A complete bike trip
contains three segments.

is how users make the bike trip selection (BTS) to minimize
the time cost on their trips so that they can enjoy the benefit
of PBS. For example, there are two trips, one going through B
and D and the other going through E and F in Figure 1. The
later one is longer than the first one on distance but it takes less
time because of its shorter walking distance and relative lower
time cost. Yoon et al. present the personal journey advisor
application to choose the pair of stations for users to travel
to minimize the travel time with high probability [7]. But it
needs the information from neighboring stations and seasonal
trend to predict the bike available probability. However, users
are usually willing to minimize their own time cost selfishly.

Benefiting from the wide applications of wireless network
and smartphone, crowdsourcing can help users share more
updated information of PBS and share it through the Inter-
net [8][9][10]. This paper adopts crowdsourcing to help users
share information of the PBS and then select bike trips before
bikes and docks are occupied. It ensures users to know the
information of PBS earlier than those system offering real-
time information and to avoid the complex calculation such as
on prediction as the previous works. When helping user select
bike trip, this paper further introduces a complete bike trip as
shown in Figure 1, which includes not only the segment from
initial bike station to target one but also two additional walking
segments, one from user’s source location to the initial bike
station and the other from the target bike station to her terminal
location. In this way, our model of the complete bike trip is
much closer to practice. We formulate the above challenges as

a BTS problem and solve it by mapping to a BTS game, and
prove that the game is equivalent to the symmetric network
congestion game [11][12]. This equivalence ensures the exis-
tence of at least one Nash Equilibrium (NE) and guarantees
the convergence to NE in finite iterations. Furthermore, this
paper develops a BTS algorithm for the game to find the NE
and allows each user to select bike trip distributively. Real
data collected from the PBS of Hangzhou City in China is
used to evaluate the performance of the BTS algorithm. We
also design a prototype crowdsourcing BTS system including
an Android APP for smartphones and a server to help users
select bike trips. The contributions of this paper is as follows:
1) Bike trip selection modeling. This paper considers the
complete bike trip including three segments, which is closer
to practice than existing works which only consider the trip
between bike stations. We formulate the BTS problem so that
user can select the bike trip in deterministic way instead of
probabilistic one beforehand.
2) Game formulation and performance analysis. We formulate
the BTS problem as the BTS game and map it to a symmetric
network congestion game. So it has at least one pure NE and
the Finite Improvement Property (FIP).
3) Distributed algorithm design. We propose the BTS algo-
rithm for the game to find bike trips for users distributively.
It is guaranteed to converge to at least one NE.
4) Real data and system based evaluation. We conduct two
experimental evaluations. In the first one, the BTS algorithm
is compared to one benchmark algorithm and real datasets
collected from the PBS in Hangzhou City of China. The
other invites some volunteers to implement the distributed BTS
algorithm on our BTS system, which includes one server and
Android APP, and is compared to the bike utilization with the
aid of electronic map.

Most symbols used in this paper are summarized in Table I.

TABLE I
SYMBOL AND MEANING

Sym. Description Sym. Description
b Bike station B Bike station set
u User/player U User set
r Bike trip/strategy T Bike trip set
o # of docks n # of bikes
M # of users N # of stations
ω Edge weight l Location/position
c Cost C Overall cost
s Strategy profile S Strategy set

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

This paper considers a mobile crowdsoucing system that
involves the collection of key state information for the PBS,
including users’ information such as their source and terminal
locations, and the bike stations’ information such as available
bikes and docks. We propose a crowdsourcing platform, called
BTS system, including an Android APP and a server. Once

user installs the Android APP on her smartphone, she can
use the map in the APP to look for available bike stations to
rent and return bikes. The APP can also find a bike trip for
her if she requests the server. Suppose that the PBS has N
stations, bk, k = 1, · · · , N , which are also used to indicate
their locations. There is a set U of users, uj , j = 1, · · · ,M ,
who request the server to help them select bike trip.

Bike station. Each bike station bk has a fixed number of
docks. On each station there are some bikes and/or empty
docks. User can rent bike from one station and return it to
another. Denote the number of bikes and empty docks by nk
and ok in each station respectively. Both bikes and docks in
each bike station are limited resources, and it can cause the
congestion when too many users rent or return bikes from or
to the same bike station.

Bike trip. We draw a bike trip selection graph in Figure 2
to illustrate the bike trips of multiple users. A complete bike
trip r composes of three segments: the first one from user’s
source location to an initial bike station, the second from the
initial bike station to a target bike station, and the third from
the target bike station to user’s terminal location, which are
denoted by e1, e2 and e3, i.e., r = {e1, e2, e3}. Each bike trip
includes the initial and target bike stations, e.g., the stations
B and D in Figure 1, and the user u’s source and terminal
locations. Denote the user’s source and terminal locations by
li(u) and lt(u) as Figure 2. The trips that user uj can select
compose a trip set Tj . The trip sets of all users merge to a
united trip set S, S = ∪uj∈UTj .

b1

b2

b3

b4

b5

b6

li u1!

li u2!

lt u1!

lt u2!

"#$%&#'#()%*$'+(*,-.(/'

"#$%&#'-$%0./,+'+(*,-.(/'

1.2./3'#30/-

1.2$'#-,-.(/

4,+2./3'#30/-

Fig. 2. Bike trip selection (BTS) graph.

Trip cost function. The overall time cost of a trip includes
the time for both walking and biking. The time of a walk-
ing segment depends on the walking velocity and segment
distance, while the time of a biking segment depends on the
biking velocity and its distance. Each segment of all bike trips
can be assigned with a weight ω, which is the time to travel
the segment. Notice that there may be multiple paths between
a pair of locations, such as between one user’s source location
to one initial bike station. User prefers the one with the lowest
time cost in order to save time. So this paper supposes that
there is only one path with the minimum distance between user
source location to initial bike station. Similar to the location
pairs from initial bike station to target bike station and from
target bike station to user terminal location. Furthermore, the
time cost of each bike trip is also determined by the status
of stations, i.e., n and o, on it. Each station bk has two
roles: the initial and target bike station, i.e., bike renting and
bike returning. Let xk⟨xrk, xtk⟩ denote the number of users
to share bk. When bk is an initial bike station, xk = xrk.

Otherwise, xk = xtk. We define two functions: rent cost
function and return cost function to capture the dependency
on the station status. The rent cost function indicates that the
trip cost is quite high and denoted by a huge value when there
is no available bikes to rent. Otherwise, it’s zero and given as
the following equation.

gr(xk) =

{
0, xk ≤ nk

∞, otherwise
(1)

Similarly, the return cost function indicates whether the bike
station bk has available empty docks to return bikes and is
given as follows.

gt(xk) =

{
0, xk ≤ ok

∞, otherwise
(2)

Summarizing the above discussions, the time cost of bike trip
r includes the time to travel its three segments and those given
by the rent and return cost functions as the following function:

c(r) =
∑
ei∈r

ω(ei) + gr(xk) + gt(xk) (3)

B. Problem Formulation

This paper assumes that each user uj acts selfishly and aims
at choosing the trip rj to minimize the time cost of her own
bike trip. Given the set U of users, the set B of bike stations,
each of which has certain numbers of bikes and docks, the
problem is how each user uj ∈ U selects her bike trip rj
selfishly so that the overall cost of her trip, c(rj), can be
minimized. This paper calls it as the BTS problem.

III. BIKE TRIP SELECTION GAME

This section formulates the BTS problem as the BTS game,
and proves that every BTS game is equivalent to a symmetric
network congestion game [11][13]. The BTS game is then
proved to have at least one NE and the FIP.

A. Symmetric Network Congestion Game

In the congestion game, players share resources, and the
cost of each player depends on the resources she chooses
and the number of players choosing the same resource [14].
Congestion game, like potential game, guarantees to have pure
NE [8], and has been extensively applied in the context of
networks, such as routing and spectrum allocation [15][16].
The network congestion game is the networked version of
the congestion game, and has good properties such as the
existence of NE and the FIP [12][13]. With the FIP, a game can
reach at least one NE ultimately when players keep improving
their strategies unilaterally where no other player changes her
strategy at any given time. In the network congestion game
[11], the resources are edges within a network. Each player
selects a route from her source vertex to terminal vertex, and
aims to minimize the cost paid for traversing congested edges.
If all players use the same pair of source and destination,
the network congestion game is symmetric, and asymmetric
otherwise [17].

A symmetric network congestion game can be defined by a
5-tuples (U, li, lt, G, (de(·))e∈E) formally, where U is a set of
players; G(V,E) is a directed graph; li and lt are the common
initial vertex and the common target vertex respectively and
de(·) is a non-decreasing and non-negative cost function for
each edge e ∈ E. A strategy for the symmetric network
congestion game is a route from li to lt. A strategy profile
s is a collection of users’ strategies when each user takes one
strategy and can be written as s = (r1, · · · , rM). The overall
cost of a player uj within a strategy profile s is:

Cuj (s) =
∑

e∈ϵ(rj)

de(ψs(e)) (4)

where ϵ(rj) is the set of edges in route rj and ψs(e) = |{uj ∈
U : e ∈ ϵ(rj)}| is the total number of players sharing the edge
e under strategy s.

Definition 1 (Pure NE): A pure Nash Equilibrium (NE) is a
strategy profile s∗ ∈ S, where any user cannot achieve lower
time cost by taking unilateral strategy.

The symmetric network congestion game is equivalent to the
congestion game. It preserves the FIP so that every sequence
of players’ asynchronous improvement steps is finite and
converges to at least one pure NE. If a player can decrease
her cost by changing her strategy while fixing other player
strategies, it is called a better response [18].

Definition 2 (Best response): A best response {rj , s−j}
of a player uj within the strategy profile s is the strategy
which can decrease uj’s cost to the minimum possible value
among all better responses given other players’ strategies
s−j = {r1, · · · , rj−1, rj+1, · · · , rM} in the current strategy
profile s.

B. Bike Trip Selection Game

The symmetric network congestion game is similar to the
BTS problem but cannot be applied to it directly. By com-
paring to the formulation of the BTS problem in Section II,
it is different from the problem in the following aspects.
1) In a symmetric network congestion game, each player
aims to minimize her cost as given in Equation (4). In the
BTS problem, each user tries to minimize her trip cost in
Equation (3). The two cost functions are different. 2) In the
game, each player shares the edge capacity with others after
she is assigned to it. In the problem, each bike trip is successful
only if both the bike renting and returning are successful.
In other words, the success of each complete bike trip is
determined by both the initial and target bike stations. 3) In
the game, a player’s cost depends only on the edges of the
route; whereas in the problem, a user’s cost depends on both
the bike stations and users’ source and terminal locations. 4)
In the game, the route of each player starts from the same
source and ends at the same destination; whereas in the BTS
problem, the users start and end at their own locations.

Converted BTS graph. In the following context, this
section presents some steps to design our BTS game so as
to eliminate the above difference. Firstly, we construct a new
graph, called converted BTS graph, based on the BTS graph

in Figure 2. For each vertex in the bike station set B, we add
a virtual one, and connect it to the real vertex with a link as
the edge e(b1, b′1) in Figure 3. Each such link connecting with
the initial bike station is assigned a weight with the number of
available bikes in the station. Each link connecting with the
target bike station is assigned a weight with the number of
available empty docks in the station. Denote all virtual vertices
by a set B′. All links connecting the initial bike stations to
their virtual ones form an edge set Ei while those connecting
the target bike stations to their virtual ones form an edge set
Er. For example, the edges e(b1, b′1) ∈ Ei and e(b4, b′4) ∈ Er

in Figure 3. The weight of edge e(b1, b
′
1) is set to be the

number of available bikes in station b1. The weight of edge
e(b4, b

′
4) is set to be the number of available empty docks in

station b4. The cost of each edge in the set Ei is given by
Equation (1) while that in the set Er is given by Equation (2).

b1

b2

b3

b4

b5

b6

b1'

b2

b3

'

'

b4

b5

b6

lt u1!

lt u2!

'

'

'

li u1!

li u2!

li

"

"

"

"

lt

G V ,E !' ' '

Eus Ei Eit EutEr
#$%&'(&)(*

Fig. 3. The converted BTS graph attaching a common source vertex and a
target vertex.

Let Eus denote the edge set of all links connecting the users’
source locations to the initial bike stations. Let Eut denote the
edge set of those connecting the virtual target bike stations to
the users’ terminal locations. Let Eit denote the edge set of all
links connecting the virtual initial bike stations to the target
bike stations. Each edge in Eus, Eut and Eit corresponds
to one segment of bike trip in Figure 2. So the weight of
edge is set to be the time to travel its corresponding segment.
For example, the edges e(li(u1), b1) ∈ Eus, e(b′4, lt(u1)) ∈
Eut, and e(b′1, b4) ∈ Eit in Figure 3. The weight of the edge
e(li(u1), b1) is the walking time to travel from li(u1) to b1.

Denote the sets of all users’ source and terminal locations
by VS and VT respectively. Define a new vertex set V ′ to
contain the vertex sets, B, B′, VS and VT . Define a new edge
set E′ to contain the edge sets, Ei, Er, Eus, Eut and Eit. It
leads to the converted BTS graph G′(V ′, E′) as shown in the
dotted box of Figure 3.

BTS game. The converted BTS graph helps us develop the
BTS game for the BTS problem. We then show that the game
is equivalent to the symmetric network congestion game. It
takes four steps to develop the BTS game, and we state them
with the help of Figure 3 as follows.

1) Define the set U of users as the set of players of BTS
game.

2) Add a virtual common source vertex li and a virtual
common target vertex lt. Let li connect to all users’ source
locations and lt connect to all users’ terminal locations. Set
the weights of all edges connecting li or lt as zero as the
example in Figure 3.

3) Take the edge set E′ as the resources, from which each
player selects her strategy. Recall that a bike trip rj of user
uj is a traveling from uj’s source location to her terminal
location. A uj’s strategy contains her bike trip rj , i.e., one
from li to lt, and going through one vertex in each of the
four sets VS , VT , B and B′, and the edges in the set E′.
Without confusion, the strategy is also denoted by rj . Define
the strategy profile s = {rj , uj ∈ U}, where rj is the strategy
of player uj . All strategy profiles form the strategy space S.

4) Define the cost function for each edge as follows. Let
the cost function for each edge connecting with li and lt as
de(x) = 0, ∀x, where x is the number of players sharing the
edge e. Define the cost function for each edge in E′ as follows.

de(x) =

ω(e), e ∈ Eus ∪ Eut ∪ Eit,∀x
gr(x), e ∈ Ei, ∀x
gt(x), e ∈ Er, ∀x

(5)

where gr(x) and gt(x) are given in Equation (1) and (2)
respectively. ω(e) is the weight, i.e., the time cost of the edge
e. With the help of Equation (3), the overall cost received
by uj within a strategy profile s is given by the following
equation:

Cuj
(s) =

∑
e∈rj

de(x
e
s) (6)

where xes is the number of users to share the edge e within
the strategy profile s, and rj ∈ s.

By the above steps, we have the player set U , the graph
G′(V ′, E′), the cost function for each edge de(·), the virtual
common source and terminal vertices li and lt. This can lead
to our definition for the BTS game as follows.

Definition 3 (BTS game): A BTS game is given by 5-
tuple (U,G′, li, lt, (de(·))e∈E′) with each player uj choosing
a strategy rj ∈ S so as to minimize the cost in Equation (6).

Recalling the formulation of the BTS problem, we can find
that the problem is consistent with the BTS game. The natural
questions are if the game has NE and the FIP or not.

C. Game Isomorphism

The symmetric network congestion game has NE and
FIP [11][13]. We can find these properties for the BTS game
by proving that it’s equivalent to the symmetric network
congestion game. Two games are equivalent if there is a weak
isomorphism from one to the other [12][19]. So we have the
following theorem.

Theorem 1: Every BTS game is equivalent to a symmetric
network congestion game.

Proof: This proof shows that the symmetric network
congestion game Γnet and the BTS game ΓBTS are i-
somorphic. Recall that the two games are given by the
5-tuples Γnet = (U, li, lt, G, (de(·))e∈E) and ΓBTS =

(U,G′, li, lt, (de(·))e∈E′) respectively. We confirm the strong
isomorphism from Γnet to ΓBTS according to its definition
in the reference [19]. Basically, the two games have the same
player set U . They have the common initial and target vertices
and thus are symmetric. Secondly, Γnet is played on the graph
G(V,E) according to its definition in Section III-A. In this
paper, the graph can be instantiated to be the graph G′ as the
example in Figure 3 since no vertex in G′ has affection on
the time cost of any route. The game can play on the graph
G′(V ′, E′) now. For Γnet, we also associate each edge e ∈ E′

with the non-decreasing and non-negative cost function as the
definition in Equation (5). Thirdly, each strategy in Γnet is a
route r from the common source li to the common target lt
and thus corresponds to a bike trip in ΓBTS . Let Snet denote
the set of all routes from li to lt in Γnet. In Γnet, each route
is a strategy. The total cost of player uj to play the strategy
rj within the strategy profile s is Cnet

uj
(s) =

∑
e∈ϵ(rj)

de(ψs(e))

according to Equation (4). Fourthly, let SBTS denote the set
of all bike trips from li to lt in ΓBTS . Since two games
play on the same graph G′, each route in Γnet corresponds
to one bike trip. The cost of bike trip rj in ΓBTS within the
strategy profile s is CBTS

uj
(s) according to Equation (6). So

we have Cnet
uj

(s) = CBTS
uj

(s). Obviously, there is a bijection:
Snet 7→ SBTS so as to convert the game Γnet to ΓBTS .

Since the symmetric network congestion game has NE and
FIP and is equivalent to the BTS game, we have the following
corollaries.

Corollary 2: Every BTS game has the FIP and at least one
pure NE.

The corollary means that any local and global optimal
solutions of the BTS game can result in at least one pure
strategy for NE [12]. Furthermore, each player uj’s best
response in the BTS game is the shortest path from li to lt,
which can be found in polynomial time by Dijkstras shortest
path algorithm. uj can find her best response given a strategy
profile s if other players fix their strategies within s. So we
can conclude this by the following corollary.

Corollary 3: A player in the BTS game can find her best
response within polynomial time.

The above corollary indicates that players can reach a NE
in polynomial time if they keep asynchronously updating their
strategies according to their best responses.

IV. BIKE TRIP SELECTION ALGORITHM

The isomorphism between the BTS game and the symmetric
network congestion game allows us to design algorithm to find
NE conveniently. Although there are some existing algorithms,
such as the min-cost flow [11][13], for the symmetric network
congestion game, they are not close to the practical status of
bike trip selection. This section designs the distributed BTS
algorithm.

A. Algorithm Design

Corollary 2 guarantees the convergence of our BTS algo-
rithm. The key idea behind the algorithm is to find a bike trip

strategy and update it asynchronously until an NE is reached
by Corollary 3. Recall that this paper uses the crowdsourcing
technique so our algorithm involves the Android APP and
the server. The algorithm runs distributively since each user
makes decision in her Android APP, which needs only a little
communication with the server. The distributed BTS algorithm
composes of two parts, one for user and the other for the
server in Algorithm 1 and Algorithm 2 respectively. By the
distributed BTS algorithm, each user uploads her personal
information: her source and terminal locations, to the server,
and then obtains the information of the bike stations including
their locations, available bikes and empty docks, and the
number of users sharing the bike stations. The APP calculates
and selects the bike trip for the user locally and sends the
selected trip to the server, which then updates the status of bike
stations on the bike trip once it receives the request messages.
Server processes messages one by one.

To initialize Algorithm 1, each user sends the request
message to the server including the user’s source and terminal
locations (line 2), checks the information of bike stations
including oj , nj and xj⟨xrj , xtj⟩, ∀bk ∈ B (line 3), calculates
the time cost of the bike trip based on the walking and
biking velocity and finds the shortest path with the distance
information provided by the server (line 4). Suppose that
Algorithm 2 receives a message containing a trip r, which
goes through the initial bike stations bk and the target bike
station bm. Line 5 of Algorithm 2 decreases one bike in bk and
one dock in bm to update xj⟨xrj , xtj⟩, ∀bk ∈ B. Algorithm 2
processes the messages of users one by one in order of arrival.

Algorithm 1 Distributed BTS Algorithm for user uj ∈ U

Input: User uj’s personal source and terminal locations li(uj)
and lt(uj).
Output: Bike trip rj .

1: while τ < τmax do
2: Request the server with a message including uj’s source

and terminal locations;
3: Check the smartphone APP for the information of bike

stations: ok, nk and xk⟨xrk, xtk⟩, ∀bk ∈ B;
4: With the Dijkstras shortest path algorithm, find the bike

trip rj ∈ Tj with the minimal cost;
5: Report the trip rj including its time cost to the server;
6: τ+ = 1.
7: end while

Notice that each user needs only request the available bike
stations to rent or return her bike and the number of users
sharing them from the server, and claims the bike trip she
selects. There is no need that users negotiate with each other
and the server calculates the bike trip for each user. In the BTS
algorithm, each user updates her strategy distributively until
a predefined iteration limit τmax. In this paper, its value is
set large enough so that the BTS algorithm can converge. Our
experiment results in the next section hint that it is enough to
set τmax > 9. The reason that each user can implement the

b1

b2

b3

b4

b5

b6

li u1!

li u2!

lt u1!

lt u2!

u1"#$%&'(

u2"#$%&'(

(a) Users select their initial trips

b1

b2

b3

b4

b5

b6

li u1!

li u2!

lt u1!

lt u2!

(b) u1 updates to the best response while u2

fixes her strategy

b1

b2

b3

b4

b5

b6

li u1!

li u2!

lt u1!

lt u2!

(c) u2 updates to the best response while u1

fixes her strategy

Fig. 4. An example to illustrate the distributed BTS algorithm. Users select their initial trips in Figure 4(a), and implement the best response updates
asynchornously in Figure 4(b) and 4(c), in which u2 is after u1. They reach a NE after several rounds of updates.

Algorithm 2 Information Exchanging Algorithm for the server
1: if Recieve user request message then
2: Provide the user with the information of bike stations:

the locations of bike stations, the numbers of bikes and
empty docks in them, and the number of users sharing
the bike stations.

3: end if
4: if Recieve user bike trip message then
5: Update the information of the bike stations on the trip.
6: end if

BTS algorithm distributively is that the server offers each user
the number of users sharing the bike stations in the step 3 of
Algorithm 1. Therefore, they can know the number, and then
select their trips to avoid congestion with others.

Figure 4 shows an example to illustrate the distributed BTS
algorithm converging to a NE in the asynchronous way. The
algorithm allows users to do the best response update in the
deterministic way. It thus saves the communication among
users. Actually, the way that the server processes the messages
in order of their arrival is a method to control users to do the
asynchronous strategy update.

B. Bike Trip Pruning

In Algorithm 1, each user needs to collect the information
of the bike station in B. We can implement the following
reasonable pruning so as to reduce greatly the amount of the
information that each user needs to process. Suppose that there
is the shoretest path directly from ls(uj) to lt(uj) without
going through any bike station. Denote the bike time cost for
the path by t(ls(uj), lt(uj)) and call it endurance time. So
each user needs only to look for the bike stations to rent bike
within the range of the endurance time centered at ls(uj).
Denote those bike stations by a set Br

j . Similarly, she can
obtain another set Bt

j of bike stations when she returns bike.
Let Bj = Br

j ∪ Bt
j and obviously Bj ⊆ B. For example, the

size of B is over 3000 while the size of Bj is 10 on average
in the experiment of Section V. By the bike trip pruning, the
great time on calculation can be reduced so that users can
converge to NE quickly.

V. EXPERIMENT EVALUATION

This section conducts two experiments to evaluate the
performance of our algorithm. The first one adopts the real

TABLE II
PRIMARY FIELDS IN THE PBS DATASETS

user id rent netid tran date tran time
6132518 3088 20140420 000154

return netid return date return time bike id
4264 20140420 000162 802347

data collected from the PBS of Hangzhou City in China
from April 1 to May 31, 2014 with 9.1 million records. The
PBS of Hangzhou is the largest one around the world and
has more than 3300 stations and over 84,000 bikes [3]. The
primary fields in the PBS datasets is shown in Table II. In the
second experiment, we design the real crowdsourcing system
including one server and the Android APP. Some volunteers
take part in the experiment and implement it in practice.

A. Real Data based Evaluation

Firstly, we propose a benchmark algorithm, called Relaxed
BTS algorithm (RTS), in which each bike station is supposed
to have infinite bikes and docks so every user can find the
shortest path. Secondly, the whole urban area of Hangzhou
City is divided into 5 experimental subareas as shown in
Figure 5. We randomly generate the users’ source and terminal
locations in the 5 regions for the algorithms BTS, RTS and
RD. RD represents the real data collected from the PBS. Note
that RD has only the information from the initial bike station
to target one and no information of the walking segments.
So the generated users’ source and terminal locations are also
applied to RD. In the real data, the bike trips arrive online.
To obtain offline bike trip information, we extract the bike
trips with moment by moment in the five subareas, such as
6:30 Am on April 20 in the subarea A, and read the status
of the bike stations at the moment from the PBS datasets of
Hanghzou. Each extracted trip corresponds to one user. The
number of trips extracted at one moment in one area is packed
into one set. It represents one user set U . U in each trial may
be different from that in another. The time cost between each
pair of bike stations is represented by the average value of
those real biking times between them in the PBS datasets.
Considering the bike trip pruning in Section IV-B, each user
sets the endurance time a random value as given in Table III to
represent the time cost of walking segment. In the following

TABLE III
EXPERIMENT SETTING

Factor Setting
Endurance time random(150,250) second
Region A, B, C, D, E in Figure 5

Data sampling time
From 6:30 to 19:30 of every day with one
hour duration in April and May. For exam-
ple, 6:30, 7:30, 8:30, · · · , 19:30.

A

B

D

C E

Fig. 5. Experiment areas includes five parts: A, B, C, D and E.

context, the average time represents the time cost per bike trip.

Figure 6 shows the average time of RD, BTS and RTS. We
can see that the average times of the three algorithms vary a
little as shown in Figure 6(a). The average time of RD 32.46
minutes while those of BTS and RTS are 13.12 and 12.93
minutes. BTS is 0.19 minutes higher than RTS on average
so they are quite close to each other. The average time of
BTS is 59.58% lower than that of RD, and 1.47% higher than
RTS. The average time varies a little big among regions in
Figure 6(b). RD is up to 38.18 minutes in the region A. The
average time of BTS is from 12.01 to 15.22 minutes while
that of RTS is from 11.77 to 14.80 minutes. We select 1422
sets of bike trips and each set contains a certain number of
bike trips different from others. The average times of the three
algorithms have different performance when the number of
trips in each set increases as shown in Figure 6(c). It keeps
stable under BTS and RTS and unstable under RD when the
number of bike trips takes different values.

The convergence of BTS algorithm is also evaluated as
shown in Figure 7. The numbers of convergent iterations
increase with the number of bike trips in each set before the
size of the set is less than 77. After the number, the convergent
iteration keeps mainly between 3 and 6 in most cases no
matter in the day of week and region. The maximal number of
iterations is 9 in the figure. So the BTS algorithm converges
fast and can keep stable performance. Since the users’ source
and terminal locations are randomly generated and the bike
trip pruning is adopted, some users may not find bike trips.
Figure 8 plots the successful ratio to select bike trip by the
distributed BTS algorithm. It is at least 99.79% in day of week
and 98.64% in region. Its average value is 99.48%. However,
it is hard to count the successful ratio for RD since there is

 ! " ! # $ $
%

&%

'%

(%

)%

*%
+,-+ +.!$+ +,!$

!
/0
1+
2
/3
4
51
6

-78+9:+;11<

(a) In day of week

 ! " # $
%

&%

'%

(%

)%

*%
+,#+ +!-.+ +,-.

-
/0
1+
23
/4
5
61
7

,18/94

(b) In region

 ! !" #! #!" $! $!" %! %!"

$

&

'

 !#(%)

+, *-./* *+./

.
01

2*
34

05
6
72
)

8*9:*;0<2*7=0>?

(c) Time cost per trip versus the number of users

Fig. 6. The time cost per trip of RD, BTS and RTS in three cases.

 ! !" #! #!" $! $!" %! %!"

$

&

'

(

 !#)%*

+,-.

/
+0
1+
23
45
63
20
7
8

/+01+92:4+352;8

(a) Convergence versus the number of users

 ! " ! # $ $
%

&

'

(

)

*

+
,-
.,
/0
12
30
/-
4
5

637,-.,8119

(b) Convergence in day of week

 ! " # $
%

&

'

(

)

*

+
,-
.,
/0
12
30
/-
4
5

617/-4

(c) Convergence in region

Fig. 7. The convergence of the distributed BTS algorithm.

no any related information left in the PBS datasets. The RTS
has no resources limitation, its successful ratio is always full.

B. Real System based Evaluation

To evaluate the performance of the distributed BTS algorith-
m in practice, we implement our real experiment in Hanghzou
City with our BTS system. The APP UI of the system is
shown in Figure 9(a) and 9(b), through which user inputs her
source and terminal locations. The APP displays her source

 ! " ! # $ $
%&

%'

%(

)**

+
,-
.,
/
01
2
,

31456758,,9

: ; < 3 =
%&

%'

%(

)**

+
,-
.,
/
01
2
,

>,2?6/

Fig. 8. Successful ratio to select
trip of the BTS algorithm.

(a) Locating (b) Trip selection (c) Overlaid trips in color

 ! " # $ % & '
(

 (

!(

"(

#(

)*+,-

)./0

/
12

3)
4*

5
6
17
38

9:3;)<=>

(d) Average time cost per trip

Fig. 9. APP UI, bike trips overlay graph and experimental results.

and terminal locations, the bike stations (in red bubble) near
her source location in Figure 9(a), and a bike trip that the
APP selects for her in Figure 9(b). Eight volunteers take
part in the real experiment, which costs more than 40 hours
and 200 kilometers in all. 41 pairs of source and terminal
locations are randomly chosen in the urban area of Hangzhou
City. For fairness, 7 volunteers choose randomly 5 pairs and
the last one chooses 6 pairs. They travel each pair of source
and terminal locations with twice trials: the distributed BTS
algorithm and the map assisted traveling. The later trial is
called “MapA”. The volunteers can find the bike stations
and obtain the navigation route with the help of electronic
map, such as Baidu or Google map, but cannot obtain the
complete navigation route from the source location to the
terminal location. So the comparison between our algorithm
and MapA is quite challenging.

The tracks of all experiment trips are recorded and are
overlaid together in color, which is shown in Figure 9(c).
Figure 9(d) shows the average time cost per trip of the
8 volunteers under both the distributed BTS algorithm and
MapA. The average time cost per trip of the first 7 volunteers
under the BTS algorithm is better than that under MapA.
They save time 19.86%, 25.81%, 36.36%, 32.09%, 27.89%,
10.27% and 30.37% respectively. There could be room for
the improvement of the distributed BTS algorithm because of
some factors. For example, the volunteers are not familiar with
the APP operation and the BTS APP is newly designed and
has not been tested in wide versions of smartphones. The APP
is not compatible well with the 8th volunteer’s smartphone. He
restarts the APP several times during each trip trial and thus
wastes much time as shown in Figure 9(d). But the average
saved time over all volunteers is up to 22.32%.

VI. RELATED WORKS

A. PBS and Crowdsourcing

The public bike is a kind of green transportation tool and
convenient for public travel in city. It increasingly appears in
many cities, such as New York (Citi Bikes), Chicago (Divvy),
San Francisco (SRFBikeShare), Washington D.C. (Capital
Timeshare) [20], and Hangzhou in China [3][21][22].

Crowdsourcing has been applied to the PBS on some
systems. Ride with GPS, Map my Ride and Bikely allow

cyclists to map biking routes and to share them with others
so as to facilitate cyclists to borrow bikes in cities [20][23].
Misra et al. propose the use of crowdsourcing mechanism
to involve a large group of stakeholders in transportation
planning and operations [24]. Motta et al. present IRMA, a
cross-device and cross-platform system that enables users to
manage a multimodal mobility [25]. Wu et al. analyze the
accuracy of Google biking times using crowdsourced data
from thousands of urban bike routes generated by the bike
sharing system [20]. Torres et al. design a participatory sens-
ing system, BeCity, which takes advantage of the collective
knowledge of transportation cyclists to improve the quality of
city cycling and provides refined city usage information for
cycling associations [26].

Different from these crowdsourcing platform, this paper
designs such a platform to help users select the bike trip, which
can be close to the practical demand.

B. Research on PBS

To solve the problem, no bike to rent or no dock to return
bike, an increasing number of works have been devoted to
PBS, such as the redistribution, system prediction and bike
trip planning [7][21]. Some works design routing mechanisms
for truck to move bikes and incentive mechanisms for users
to help with bike redistribution [6][27][28][29].

Fricker et al. compute the least rate for the bike redistri-
bution by truck given quality of service, and suggest users to
return to the least loaded stations [27]. Singla et al. design a
crowdsourcing mechanism to provide the users with alternative
stations by monetary incentive [5]. Liu et al. solve the large
scale vehicle redistribution problem [29]. System prediction
estimates bicycle availability based on the recent history of
bikes in different bike stations, such as hourly prediction of
rental bicycles [3], bike demand prediction [30][31] and the
individual trip prediction [32].

Few works provide real time trip planning for users. Yoon et
al. predict the availability of bike resources at every bike
station and help users select the best pair of stations with
the minimal time cost and the maximal probability to finish
trip after giving the origin and destination [7]. Zhang et al.
aim at finding the optimal trip route from the origin to the
destination through several bike stations in the PBS by the

minimum-cost network flow algorithm [33]. These works did
not fully consider the complete bike trip and the service quality
of the system.

However, the redistribution and prediction of PBS are not
very precise and timely for single user so it cannot tell
users exact information of bike trips. Existing works on the
trip planning did not consider the complete bike trip or are
probability-based. So the planned trip is not timely too. This
paper suggests the deterministic way to help user select bike
trip with crowdsourced information and thus provides bike trip
selection beforehand.

VII. CONCLUSION

This paper studies the BTS problem for the practical PBS by
considering the complete three-segment bike trip. The problem
is mapped to the BTS game, which is proved to be equivalent
to the symmetric network congestion game. So the existence of
NE and the FIP is ensured. The distributed BTS algorithm then
is designed to find NE with finite iterations. We evaluate the
algorithm with the PBS datasets of Hangzhou City in China.
The experiment results show that the algorithm can save much
time compared to the way in users’ daily habit, i.e., MapA.
We also designed the BTS system including the Android APP
and the server. Some volunteers take part in the experiment
with the intensive trials in Hangzhou City. The experiment on
the system indicates that BTS algorithm can much time.

Acknowledgement. This work is supported by the National Nat-
ural Science Foundation of China under Grants No. 61473109,
61572164 and 61671193, Key Research and Development Plan of
Zhejiang Province under Grant No. 2018C04012.

REFERENCES

[1] Peter Midgley. The role of smart bike-sharing systems in urban mobility.
Journeys, 2(1):23–31, 2009.

[2] Ahmadreza Faghih-Imani and Naveen Eluru. Analysing bicycle-sharing
system user destination choice preferences: Chicago’s divvy system.
Journal of transport geography, 44:53–64, 2015.

[3] Zidong Yang, Ji Hu, Yuanchao Shu, Peng Cheng, Jiming Chen, and
Thomas Moscibroda. Mobility modeling and prediction in bike-sharing
systems. In ACM MobiSys, pages 165–178, Singapore, Jun 26-30 2016.

[4] Jie Bao, Tianfu He, Sijie Ruan, Yanhua Li, and Yu Zheng. Planning
bike lanes based on sharing-bikes’ trajectories. In ACM KDD, accepted
to appear. Halifax, Nova Scotia, Canada, Aug 13-17 2017.

[5] Adish Singla, Marco Santoni, Gábor Bartók, Pratik Mukerji, Moritz
Meenen, and Andreas Krause. Incentivizing users for balancing bike
sharing systems. In AAAI, pages 723–729, Austin, TX, USA, Jan 25-29
2015.

[6] Julius Pfrommer, Joseph Warrington, Georg Schildbach, and Manfred
Morari. Dynamic vehicle redistribution and online price incentives in
shared mobility systems. IEEE Transactions on Intelligent Transporta-
tion Systems, 15(4):1567–1578, 2014.

[7] Won Yoon Ji, F. Pinelli, and F. Calabrese. Cityride: A predictive bike
sharing journey advisor. In IEEE MDM, pages 306–311, Bengaluru,
India, Jul 23-26 2012.

[8] Jianhui Zhang, Zhi Li, Xiaojun Lin, and Feilong Jiang. Composite task
selection with heterogeneous crowdsourcing. In Proceedings of IEEE
SECON, pages 379–387, San Diego, CA, USA, Jun 12-14 2017.

[9] Xinglin Zhang, Zheng Yang, Wei Sun, Yunhao Liu, Shaohua Tang, Kai
Xing, and Xufei Mao. Incentives for mobile crowd sensing: A survey.
IEEE Communications Surveys & Tutorials, 18(1):54–67, 2016.

[10] Shibo He, Dong Hoon Shin, Junshan Zhang, Jiming Chen, and Phone
Lin. An exchange market approach to mobile crowdsensing: Pricing,
task allocation and walrasian equilibrium. IEEE J-SAC, PP(99):1–1,
2017.

[11] Berthold Vöcking. Congestion games: Optimization in competition.
In Proceedings of the Second ACiD Workshop on Algorithms and
Complexity, pages 9–20, Durham, UK, Sep 18-20 2006.

[12] Dov Monderer and Lloyd S Shapley. Potential games. Games and
economic behavior, 14(1):124–143, 1996.

[13] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The com-
plexity of pure nash equilibria. In ACM STOC, pages 604–612, Chicago,
IL, USA, Jun 13-15 2004.

[14] Robert W Rosenthal. A class of games possessing pure-strategy nash
equilibria. International Journal of Game Theory, 2(1):65–67, 1973.

[15] C Tekin, Mingyan Liu, R Southwell, and Jianwei Huang. Atomic
congestion games on graphs and their applications in networking.
ACM/IEEE TON, 20(5):1541–1552, 2012.

[16] Richard Southwell, Jianwei Huang, and Xin Liu. Spectrum mobility
games. In Proceedings of IEEE INFOCOM, pages 37–45, Orlando, FL,
USA, Mar 25-30 2012.

[17] Marios Mavronicolas, Igal Milchtaich, Burkhard Monien, and Karsten
Tiemann. Congestion games with player-specific constants. In MFCS,
pages 633–644, Ceský Krumlov, Czech Republic, Aug 26-31 2007.

[18] Richard Southwell, Yanjiao Chen, Jianwei Huang, and Qian Zhang.
Convergence dynamics of graphical congestion games. In International
Conference on Game Theory for Networks, pages 31–46, 2012.

[19] Joaquim Gabarró, Alina Garcı́a, and Maria Serna. On the complexity
of game isomorphism. Mathematical Foundations of Computer Science,
pages 559–571, 2007.

[20] Mingsheng Wu and Vanessa Frias-Martinez. Crowdsourcing biking
times. In Adjunct Proceedings of UbiComp/ISWC, pages 1123–1131,
Osaka, Japan, Sep 7-11 2015.

[21] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. Traffic prediction in
a bike-sharing system. In ACM SIGSPATIAL, pages 33:1–33:10, Seattle,
WA, USA, Nov 3-6 2015.

[22] Yang Tang, Haixiao Pan, and Qing Shen. Bike-sharing systems in
beijing, shanghai, and hangzhou and their impact on travel behavior. In
Transportation Research Board 90th Annual Meeting, number 11-3862,
Washington, D.C, USA, Jan 23-27 2011.

[23] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing
Xie. Searching trajectories by locations: an efficiency study. In ACM
SIGMOD, pages 255–266, Indianapolis, IN, USA, Jun 6-11 2010.

[24] Aditi Misra, Aaron Gooze, Kari Watkins, Mariam Asad, and Christopher
Le Dantec. Crowdsourcing and its application to transportation data
collection and management. Transportation Research Record: Journal
of the Transportation Research Board, (2414):1–8, 2014.

[25] Gianmario Motta, Daniele Sacco, Tianyi Ma, Linlin You, and Kaixu Liu.
Personal mobility service system in urban areas: The irma project. In
IEEE SOSE, pages 88–97, San Francisco Bay, USA, Mar 30 - Apr 3
2015.

[26] Salomon Torres, Felipe Lalanne, Gabriel Del Canto, Fernando Morales,
Javier Bustos-Jimenez, and Patricio Reyes. Becity: sensing and sensi-
bility on urban cycling for smarter cities. In IEEE SCCC, pages 1–4,
Santiago, Chile, Nov 9-13 2015.

[27] Christine Fricker and Nicolas Gast. Incentives and redistribution in
homogeneous bike-sharing systems with stations of finite capacity. Euro
journal on transportation and logistics, 5(3):261–291, 2016.

[28] Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano
Novellani. The bike sharing rebalancing problem: Mathematical formu-
lations and benchmark instances. Omega, 45:7–19, 2014.

[29] Junming Liu, Leilei Sun, Weiwei Chen, and Hui Xiong. Rebalancing
bike sharing systems: A multi-source data smart optimization. In ACM
KDD, pages 1005–1014, San Francisco, CA, USA, August 13-17 2016.

[30] Patrick Vogel, Torsten Greiser, and Dirk Christian Mattfeld. Understand-
ing bike-sharing systems using data mining: Exploring activity patterns.
Procedia-Social and Behavioral Sciences, 20:514–523, 2011.

[31] Patrick Vogel and Dirk Mattfeld. Strategic and operational planning
of bike-sharing systems by data mining–a case study. Computational
Logistics, pages 127–141, 2011.

[32] Jiawei Zhang, Xiao Pan, Moyin Li, and S Yu Philip. Bicycle-sharing
system analysis and trip prediction. In IEEE MDM, volume 1, pages
174–179, Porto, Portugal, Jun 13-16 2016.

[33] Jiawei Zhang and S Yu Philip. Trip route planning for bicycle-sharing
systems. In IEEE CIC, pages 381–390, Pittsburgh, PA, USA, Nov 1-3
2016.

