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Abstract—Great efforts have been devoted to performing
resources prediction, redistribution and trip planning to alleviate
the unbalance of resources and inconvenience of bike utilization
caused by the explosion of users in Bike-Sharing System (BSS).
However, there is few work in trip planning noticing that the
complete trip composes of three segments: from user’s start
point to a start station, from the start station to a target station
and from the target station to user’s terminal point. To study
the case, this paper addresses a static trip planning problem
in BSS by considering system-wide conflicts so as to achieve
higher service quality of the system. The problem is formulated
as the well-known weighted k-set packing problem. We design
two algorithms, a Greedy Trip Planning algorithm (GTP) and a
Humble Trip Planning algorithm (HTP), for the problem. For
comparison, we design a Random Trip Planning algorithm (RTP)
as a benchmark. Extensive simulation results show that GTP and
HTP outperform RTP and reveal the impact of different factors
on our algorithms.

Index Terms—Bike-Sharing System; Trip Planning; Complete
Bike Trip; Service Quality; Conflict

I. INTRODUCTION

Bike-Sharing System (BSS) is a convenient service de-
ployed in many big cities to alleviate the last-mile problem [1].
More and more users choose to use bike-sharing service brings
pressure to both user and BSS. Now, it is quite often that some
users are not able to borrow or return bikes from or to stations
because of the serious resources unbalance in the BSS, i.e.
some stations have few bikes or docks. To relieve the pressure,
the prediction is designed to estimate the resources [2]–[4]
and the redistribution is adopted to alleviate the resources
unbalance [5]–[7]. From the user point of view, the station pair
selection is proposed to help user borrow and return bike [8].

To improve the system utilization, it is necessary to alleviate
the unbalance by redistributing bikes frequently in the BSS.
Several works [5]–[7] design the routing mechanisms for
trucks to move bikes and the incentive mechanisms for users
to help with bike redistribution. However, redistribution is
quite expensive and challenging because of the hardness to
know available resources at each station in real time. Some
related works leverage techniques such as machine learning
and data mining to predict the available resources at each
station [2]–[4]. However, the prediction is not very useful
for each single user. For each specific user, the trip planning
is more valuable since he can complete the trip by knowing
exactly which stations to rent or return bikes. Ji Won Yoon et
al. mentioned to help users select the best pair of stations with
the minimal time cost and the maximal probability to finish trip
after giving the origin and destination location [8]. Agostino
Nuzzolo et al. design a trip planning system which considers

user’s preference [9]. However, they care only about single
user rather than the system-wide bike-sharing service quality.

When user rides the bike in the BSS, the complete trip
composes of three segments: from user’s start point to a start
station, from the start station to a target station and from
the target station to user’s terminal point. To the best of our
knowledge, there is few work notices the trip composition and
designs corresponding trip planning algorithm. To study the
case, this paper addresses a static trip planning problem to
maximize the number of served users and minimize their trip
time, i.e. to achieve higher service quality of the BSS. This
paper studies the case that all bike resources can be allocated
for only once and the arriving time of user is not considered.
The trip planning problem is mapped to the weighted k-set
packing problem [10], which is NP-hard. This paper designs
two heuristic algorithms, a Greedy Trip Planning algorithm
(GTP) and a Humble Trip Planning algorithm (HTP), to
solve the problem. For comparison, this paper designs a
Random Trip Planning algorithm (RTP). Extensive simulation
is conducted based on the data of Hangzhou Public Bicycle.
Simulation results show that GTP and HTP outperform RTP
and reveal how the experiment region, the user amount and
the user’s maximal walking range impact our algorithms.

II. SYSTEM MODEL

This paper considers the BSS with the bike station set B and
the user set U, where B = {b1, ..., bN} and U = {u1, ..., uM}.
N and M are the numbers of bike stations and users re-
spectively. In B , each bike station bi is associated with: a
location li, the number of available bikes Ao

i and the number
of available docks At

i. Obviously, Ao
i ≥ 0 and At

i ≥ 0. In
U, each user ui is associated with: a start point loi , a terminal
point lti , a start station set Bo

i and a target station set Bt
i . Bo

i

contains all stations that ui can borrow a bike and Bt
i contains

all stations that ui can return the bike.
This paper considers each user ui’s trip is a complete bike

utilization process with three segments. ui first walks from his
start point loi to a start station boi . After borrowing a bike, he
rides to a target station bti to return the bike and then walks
to his terminal point lti . Fig. 1 shows an example of the trip
composition. The incomplete bike utilization process, i.e. users
are not able to borrow or return bikes, is not considered in this
paper. This paper defines trip in the BSS as follows.

Definition 1 (Trip): A trip for user ui, denoted by ti =
(loi , b

o
i , b

t
i, l

t
i), is a complete bike utilization process with three

segments: from user’s start point loi to a start station boi , from



the start station to a target station bti and from the target station
to user’s terminal point lti .

Fig. 1. The trip with three segments

Each trip consumes some time, which is the sum of the
time consumption of the three segments, denoted by τ1i , τ2i ,
τ3i . The time is related to the length of each segment and its
corresponding speed and given as the following definition.

Definition 2 (Trip Time): The time C(ti) of trip ti is the
overall time to complete ti:

C(ti) = τ1i + τ2i + τ3i . (1)

In the BSS, each user may borrow and return a bike at more
than one bike station. Thus, he has several available trips to
reach his terminal point. These trips are included in a trip set.

Definition 3 (Trip Set): A trip set of user ui, denoted by
Hi = {t1i , ..., tKi }, is the collection of all trips available to ui,
and can be calculated by the following equation.

Hi = {ti = (loi , b
o
i , b

t
i, l

t
i)|boi ∈ Bo

i , b
t
i ∈ Bt

i}. (2)

Let H denote the union of all users’ trip sets and we have

H =
∪

ui∈U

Hi. (3)

III. PROBLEM FORMULATION

To improve the service quality of the BSS, this paper
introduces the trip planning, which intends to allocate a trip
to each user. This section first describes the trip allocation by
considering the conflicts among trips, and formulates the trip
planning problem and shows its hardness.

A. Trip Allocation

When there are limited bikes and docks at each bike station
in the BSS, some users may not borrow or return bikes at their
nearest stations, which is called conflict in this paper. In the
BSS, there is conflict at a bike station bi if it has insufficient
bikes or docks to fulfill users’ demand. If a trip contains a
conflicting station, it is called a conflicting trip. Otherwise, it
is a non-conflicting trip.
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Fig. 2. Conflict

For example, three trips, ti of ui, tj of uj and tk of uk,
are shown in Fig. 2. All stations have enough bikes and docks

except b1 and b5. b1 has only one bike and b5 has only one
dock. We have that b1 and b5 are two conflicting stations. ti,
tj and tk are three conflicting trips.

Considering there are conflicts in the BSS, trips in the BSS
should be carefully allocated to users so as to achieve higher
service quality of the system. We include all the allocated trips
into an allocated trip set, denoted by h. Obviously, h ⊂ H
and h is not unique under different trip allocation strategy.

B. Trip Planning Problem

In this paper, the process of allocating trips to users is called
trip planning. Intuitively, the service quality of the BSS is
related to the amount of users who complete their trips and
their trip time. That is, to improve the service quality of the
BSS, the number of served users should be increased while
the time of all allocated trips should be decreased. To combine
the two factors together, we define the trip quality.

Definition 4 (Trip Quality): The quality Q(ti) of a trip ti is
inversely proportional to its trip time as the following equation.

Q(ti) =
1

C(ti)
(4)

According to the equation, it’s easy to find that the trip quality
can be maximized by minimizing the trip time. More short-
time trips result in higher overall trip quality.

This paper considers that the service quality of the BSS is
the total quality of all allocated trips. If there is no allocated
trip, the service quality is 0. The trip planning problem is then
described as: Given the bike station set B and the user set U,
find the allocated trip set h so that the total quality of all trips
in h is maximized. The problem can be formulated as:

max
∑
ti∈h

Q(ti) (5)

s.t. Ao
j ≥

∑
ti∈h

I(boi , bj),∀bj ∈ B (6)

At
j ≥

∑
ti∈h

I(bti, bj),∀bj ∈ B (7)

Where I(bi, bj) is 1 when bi and bj are the same bike
station, and 0 otherwise. Eq. (6) and (7) indicate the resource
constraints of each station in the BSS.

C. Hardness of Trip Planning Problem

Theorem 1: The trip planning problem given in Eq. (5), (6)
and (7) is NP-hard.

Proof: We prove the theorem by reducing the problem to
the weighted k-set packing problem [10], which is described
as follows: Given a collection of sets I = {I1, ..., In}, each
of which has an associated weight and contains at most k
elements drawn from a finite basic set G, find a collection
with disjoint sets of maximum total weight.

For ui’s trip ti = (loi , b
o
i , b

t
i, l

t
i), he borrows one bike

from boi , and consume one dock at bti. Let set Ii =
{ui, a bike at boi , a dock at bti} and its weight be Q(ti). Let
I = {I1, ..., In} be the collection of all possible Ii and G
be the set of all users, bikes and docks. We have that I is



drawn from G. By this way, the trip planning problem can
be reduced to a maximum weighted 3-set packing problem,
which is known to be NP-hard when k ≥ 3 [10].

IV. GREEDY TRIP PLANNING

A. GTP Algorithm

To maximize the total quality of trips in h, GTP greedily and
iteratively allocates the trip which has the maximum quality
in H . Note that when a trip is allocated to a user ui, all trips
in Hi should be deleted from H , because he needs only to
complete one trip. GTP is summarized in Algorithm 1.

Algorithm 1 Greedy Trip Planning Algorithm
Input:

Bike station set: B ; User set: U;
Output:

Allocated trip set: h;
1: h = ∅;
2: Construct the trip set H and calculate all trips’ quality;
3: while H ̸= ∅ do
4: Find the maximum-quality trip t∗i = (loi , b

o
i , b

t
i, l

t
i) in

H ;
5: h = h ∪ t∗i ;
6: Update bike resources at boi and bti;
7: Delete Hi of t∗i ’s corresponding user ui from H ;
8: end while
9: Output h;

B. Trip Set Pruning Strategy

In reality, users may not be willing to walk that far to
borrow bikes or to their terminal points after returning bikes.
Therefore, trips that contain such stations can be pruned
from the trip set of each user by setting a maximal walking
range, denoted by dmax, to reduce the complexity of the trip
planning. The station set Bo

i and Bt
i of user ui can thus be

calculated by the following two equations.

Bo
i = {bj |bj ∈ B,Ao

j > 0, d(loi , lj) < dmax} (8)

Bt
i = {bj |bj ∈ B,At

j > 0, d(lj , l
t
i) < dmax} (9)

C. Theoretical Performance

Given the N bike stations and the M users in the BSS, we
describe the time complexity of GTP. GTP first takes 1 step
to initialize the set h. Constructing the trip set H takes MN2

steps. Then in each round, let m be the users that do not have
a trip allocated. So it takes mN2 steps to find the maximum-
quality trip in H . Adding the maximum-quality trip to h and
updating the bike resources take two steps. Deleting trips from
H takes mN2 steps. Because only one trip is allocated in each
round, the “while” loop costs

∑M
m=0 2mN2+2 steps. To sum

up, the total cost of GTP is given by O((NM)2).
Let Nd be the maximum size of all start station sets and

target station sets after applying the trip set pruning strategy.
The total cost of GTP can thus be given by O((NdM)2). Note

that if dmax is set properly, N2
d can be far less than N2. The

complexity of GTP can thus be reduced a lot.
Then we present the approximation ratio of GTP.
Theorem 2: The approximation ratio of GTP is 1

3 .
Proof: As the trip planning problem is proved to be

a weighted 3-set packing problem and the greedy approach
of a weighted k-set packing problem is proved to be a k-
approximation algorithm [10]. Therefore, the approximation
ratio of GTP is 1

3 .

D. Local Optimality of Greedy Algorithm

As shown in Fig. 3, this part presents an example of the local
optimality of GTP. There are two users u1 and u2 and each
has two available trips, i.e. t11, t21 of user u1 and t12, t22 of user
u2. The trip quality of these trips are: Q(t11)=10, Q(t21)=8,
Q(t12)=9, Q(t22)=3. All bike stations have enough bikes and
docks except b1, which has only one bike. By applying GTP,
t11 and t22 are allocated to u1 and u2 respectively. The total
trip quality is 13. However, when t21 and t12 are allocated to
u1 and u2 respectively, the total trip quality is 17.
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Fig. 3. An example of local optimality of GTP

V. HUMBLE TRIP PLANNING

In this section, we present HTP to solve the trip planning
problem and overcome the local optimality of GTP.

A. Basic Idea

In the example presented in Section IV-D, when changing
u1’s trip from t11 to t21, his trip quality is reduced by 2. In
this paper, t21 is called the alternative trip and the quality
reduction 2 is called the trip-changing costs for t11. Thus,
the trip-changing cost for t11 and t12 are 2 and 6 respectively.
Intuitively, it is harder to find an alternative trip for the trip
which has higher trip-changing cost, so the trip should be
allocated first to achieve higher service quality of the BSS.
By doing so, t12 is allocated to u2, and the total quality of the
BSS is 17, higher than that achieved by GTP.
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Fig. 4. Alternative trip

This paper defines the alternative trip of trip ti ∈ Hi as
the maximum-quality trip among all trips in Hi that do not



contain the conflicting stations of ti. For instance, in Fig. 4,
there are three trips of ui and Q(t1i ) > Q(t2i ) > Q(t3i ). b1
is a conflicting station of t1i and in t2i . The alternative trip
of t1i is t3i . In this paper, if the alternative trip of ti exists,
ti’s trip-changing cost is defined as the difference between
the trip quality of ti and its alternative trip. Otherwise, ti’s
trip-changing cost is set as Q(ti).

B. HTP Algorithm

HTP first eliminates conflicts among users’ maximum-
quality trips by greedily and iteratively allocating a maximum-
quality trip which has the maximum trip-changing cost to its
corresponding user. After all conflicts been eliminated, the
maximum-quality trips of the remaining users are allocated
directly. HTP is summarized in Algorithm 2.

Algorithm 2 Humble Trip Planning Algorithm
Input:

Bike station set: B ; User set: U;
Output:

Allocated trip set: h′;
1: Up = U, h′ = ∅;
2: Construct Hi for each ui ∈ Up and calculate all trips’

quality;
3: while Up ̸= ∅ do
4: Select the maximum-quality trip for each ui ∈ Up from

their Hi to form a set H ′;
5: Select all conflicting trips from H ′ to form a set H ′′;
6: if H ′′ ̸= ∅ then
7: Calculate the alternative trip and the trip-changing

cost for ti ∈ H ′′;
8: Find the trip t∗i = (loi , b

o
i , b

t
i, l

t
i) which has the

maximum trip-changing cost among all trips in H ′′;
9: h′ = h′ ∪ t∗i ;

10: Update bike resources at boi and bti;
11: Delete t∗i ’s corresponding user from Up;
12: else if H ′′ = ∅ then
13: h′ = h′ ∪H ′;
14: break;
15: end if
16: end while
17: Output h′;

Similar to GTP, the trip set pruning strategy presented in
Section IV-B can also be adopted in HTP.

C. Theoretical Performance

Given the N bike stations and the M users in the BSS, we
describe the time complexity of HTP. In HTP, the initialization
takes 1 step. Constructing the trip set Hi for each user in Up

and calculating all trips’ quality take MN2 steps. Then in
each round, let |Up| = m. Selecting the maximum-quality trip
for each user in Up takes mN2 steps. Selecting all conflicting
trips from H ′ takes 2m steps. The worst case of HTP is that
all trips in H ′ are in conflict and only one trip can be allocated
in each round, so we only consider H ′′ ̸= ∅. Calculating the

alternative trip and the trip-changing cost for each trip in H ′′

takes mN2 steps. Finding the trip t∗i takes m steps. Adding
the trip t∗i to h′ and updating the bike resources take two steps.
Deleting t∗i ’s corresponding user from Up takes m steps. So
the “while” loop costs

∑M
m=0 2mN2 + 4m+ 2 steps in total.

To sum up, the total cost of HTP is given by O((NM)2).
Let Nd be the maximum size of all start station sets and

target station sets after applying the trip set pruning strategy.
The total cost of HTP can be given by O((NdM)2).

VI. EXPERIMENT EVALUATION

This section conducts extensive simulation to evaluate our
algorithms based on real data of Hangzhou Public Bicycle.

A. Methodology

This paper proposes a Random Trip Planning algorithm
(RTP), which describes the character of the bike utilization
in daily life, to compare with GTP and HTP algorithms. It
randomly and iteratively selects a user ui in U, then allocates
the maximum-quality trip in the trip set Hi to him.

In the experiment, we consider the impact of the experiment
region, the user amount and the maximal walking range. The
detailed settings of the experiment are summarized in Table I.

TABLE I
EXPERIMENT SETTINGS

Factor Setting
Experiment region Region A, B, C

|U| 0.5k, 1k, 2k, 3k, 5k, 7k, 10k, 15k, 20k,
25k, 30k, 35k, 40k, 45k, 50k

dmax 100m, 200m, 300m, 500m, 1000m, 1500m
Walking speed 5km/h
Riding speed 20km/h

Fig. 5. Experiment regions

The three regions A, B and C are selected from the
central area of Hangzhou city, as shown in Fig. 5. The bike
station dataset of Hangzhou Public Bicycle is utilized in the
experiment and the amount of bikes and docks at each bike
station are initialized randomly. Since bike resources can be
used only once in this paper, the total allocated trips is bounded
by the minor one of the total bikes and docks in each region.

For each specific setting of different factors, this paper runs
the simulation for 20 times and records the average results.



B. Simulation Results

We evaluate our algorithms by the Average Trip Time (ATT)
of all allocated trips and the number of Allocated Trips (AT).

Average trip time. Fig. 6 shows the ATT of the three algo-
rithms. Fig. 6(a) shows that when |U| is small, the ATT of each
algorithm is almost the same and increases along with |U|.
While the ATT of RTP almost keeps unchanged and is bigger
than that of HTP and GTP when |U| gets bigger. Therefore, in
the scope of ATT, GTP and HTP outperform RTP. It is because
the allocated trips of RTP are not intentionally selected and
only reflect the baseline performance. The ATT of HTP is
bigger than that of GTP, which is because GTP always tries
to allocate the maximum-quality trip first. Fig. 6(b) shows the
ATT of GTP changes along with |U| in different regions when
dmax is 500m, where smaller region results in lower ATT,
which is mainly because the average distance between user’s
start and terminal points is much smaller in the smaller region.
The same goes for HTP.
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Fig. 6. The ATT of GTP, HTP and RTP

Allocated trips. Fig. 7 shows the total AT of HTP and RTP
are almost the same and more than that of GTP. As RTP does
not contribute much on reducing the ATT and increasing the
AT, we can conclude that GTP and HTP outperform RTP.
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Fig. 7. The total number of AT of 3 algorithms in region A
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Fig. 8. The difference of AT between HTP and GTP

Fig. 8 shows the difference of AT between HTP and GTP,
i.e. the total AT of HTP minus that of GTP, and we have that
HTP can always allocate more trips than GTP. Fig. 8(a) shows
that for a specific region and dmax, the difference between
AT of HTP and GTP increases when |U| is small, while it
decreases when |U| increases. The difference becomes 0 at
last for there is an upper bound of AT. Fig. 8(b) shows the
impact of dmax on the difference of AT between HTP and
GTP, which suggests that when 100m ≤ dmax ≤ 300m, HTP
achieves the most difference of AT towards GTP. To conclude,
in the scope of AT, HTP performs better than GTP.

VII. CONCLUSION
This paper addresses a static trip planning problem, which

considers system-wide conflicts in BSS so as to maximize the
number of users served by the system and minimize their trip
time. We formulate the problem as the well-known weighted
k-set packing problem and design three algorithms, namely
GTP, HTP and RTP. Extensive simulation is conducted based
on dataset of Hangzhou Public Bicycle. Simulation results
show that GTP and HTP outperform RTP and reveal the impact
of different factors on GTP and HTP.
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