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Abstract—Public Bike System (PBS) not only provides conve-
nient travel service but also alleviates the last-mile problem. With
the increasing awareness of environmental protection and green
commuting, people prefer to use the public bike as transportation
for short-distance travel. However, the explosion of users in PBS
leads to new congestion problems. To relieve the pressure of
PBS, there are many types of research on system prediction,
operation, and trip planning. However, there is few work focusing
on the online trip planning problem. To study the case, we
propose an Online Matching Trip Planning algorithm (OMTP),
and we prove the theoretical lower bound of OMTP is 1 - 1/e.
And then, we consider the short-term conflicts among users and
design an Online Group Trip Planning algorithm (OGTP). We
design two kinds of experiments- Generated Data Based and
Real Data Based. In the generated data based experiment, we
reveal the impact of different parameters with the generated
trip data. In the real data based experiment, we validate our
proposed algorithms with the real trip data set in New York
City. The results show that OMTP and OGTP save time per trip
on average.

Index Terms—Public Bike System, Online Matching, Network
Flow

I. INTRODUCTION

Public Bike System (PBS) has become popular in many
cities, which provide tremendous convenience for people’s
daily life [1]. As a new part of the urban public transportation
system, PBS has eased the pressure of urban traffic congestion
and air pollution problem. However, the explosive growth of
bicycles in PBS also brings some potential problems to the
cities.

Compare to other types of vehicles, the public bicycle has
its unique characteristics. First of all, unlike traditional public
transportation (e.g. taxis and buses), the public bicycle is
unattended and shared. As time goes on, the public bicycles in
PBS are assembled in a group of stations. Second, the usage
frequency of public bicycles is susceptible to other external
factors (e.g. weather), which makes it hard to predict in ad-
vance. These two features bring challenges to the management
and the optimization of PBS.

Many researchers have paid attention to PBS, with the aim
to promote its efficiency. In general, researches on public
bike systems can be classified into four groups, i.e. system
prediction, system operation, trajectory data analysis and bike
trip planning. System prediction includes the bike availability
predict and rent demand predict [2] [3] [4], which mainly
relies on new technologies such as machine learning, and
data mining. System operation mainly focuses on the bike
reposition problem, which can be further divided into two

camps: regularly transport by trunks [5] and incentive users to
help with bike redistribution [6]. Further, with the emergence
of wireless communication tools, there are a large number of
bike trajectories generated every day. In recent years, some
researchers try to excavate the value of these trajectories,
e.g. detecting illegal parking vehicle [7], helping to plan bike
lanes [8]. As far as we know, there is few work focusing
on the bike trip planning problem. Unlike system prediction,
system operation, and trajectory data analysis, the bike trip
planning problem focuses on providing a convenient riding
experience for each user. Hu propose a fine-grained prediction
model and present a trip advisor that helps to balance bike
usage [9]. Zhang et al. model the bike trip planning problem
as a Bike Trip Selection (BTS) game and prove that the game
is equal to a symmetric network congestion game, and develop
a distributed algorithm to help users to select bike trip [10].

Li et al. focus on the large-scale bike trip planning problem
that takes the three-segment of each bike trip into consid-
eration [11]. In his model, all users’ information is given
and the resources at each station can be used only once,
which is impractical since users’ information is unknown in
advance and resources at each station in real scenario change
dynamically. To overcome the shortcomings of his model,
this paper addresses a more practical problem, called the
online bike trip planning problem (OTP). And we propose
two algorithms: an Online Matching Trip Planning algorith-
m (OMTP) and an Online Group Trip Planning algorithm
(OGTP), to solve this problem. In OMTP, the OTP problem is
formulated as the well-known Online Matching problem, and
we prove the theoretical lower bound of the OMTP algorithm
is 1 − 1

e . In OGTP, we consider the short-term conflicts
among users and reformulate the OTP problem based on the
network flow model. Next, we design the OGTP algorithm
to solve it. In the experiment part, we design two kinds of
experiments- Generated Data Based and Real Data Based. In
the generated data based experiment, we test the impact of
different parameters based on the generated data, and then
analyse the possible reason. In the real data based experiment,
we analyze the real-world human mobility data set in New
York City and validate our proposed algorithms with it.

Contribution. The main contributions of this paper are
listed as follows:

1) Online bike trip model construction. We propose the
online bike trip planning model and give the corresponding
problem formulation, in which the complete three-segment
bike trip is considered.
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2) Online algorithm design. First, we design the OMTP
algorithm and prove the theoretical lower bound of OMTP.
Next, we consider the short-term conflicts among users and
reformulate the problem based on the network flow model,
and design the OGTP algorithm to solve it.

3) Experiment design and result analysis. We design two
kinds of experiments and do extensive simulations to test the
performance of two algorithms. Under each experiment result,
we analyse the possible reasons.

Paper Structure. In Section II, we give the system model
and formulate the online trip planning problem. In Section III
and IV, we introduce the OMTP algorithm and the OGTP
algorithm respectively. In Section V, we design two kinds
of experiments and analyse the possible reasons. In Section
VI and Section VII, we give some discussions and review
some related work respectively. In Section VIII, we make a
conclusion of the whole paper.

II. PROBLEM FORMULATION

This section presents the system model in PBS when users
arrive online, which is quite close to reality. We then formulate
the online trip planing problem.

A. System Model

In this paper, we focus on the online public bike trip
planning problem where users arrive online. We consider the
situation of PBS over a time period T . Let B = {b1, · · · , bN}
denote the the bike station set and U = {u1, · · · , uM} denote
the user set, where N is the number of bike stations in PBS
and M is the number of users who request the server to help
them plan bike trip during the time period.

User. Each user ui contains three parameters: a start location
loi , a terminal location lti and the appear time ξi, denoted as
ui = {loi , lti , ξi}. Note that the appearance of users is stochastic
and user can occur at any location at any time. But, the appear
time of all users is in the range of the time period T . And we
assume that the user’s information will not change or cancel
after uploading.

Bike Station. Each bike station bi contains three parame-
ters: its location li, the number of available bikes Ac

i and the
number of empty docks As

i . In real life, Ac
i and As

i change
dynamically as the user borrows or returns a bicycle. But the
sum of Ac

i and As
i is a fixed number, which is equal to the total

docks of station bi. For user ui, he can borrow a bike from one
station and return it to another station. The bike station where
user ui can borrow one bike is the start station boi , while the
station where user ui can return it is the target station bti. For
user ui, he may have more than one start station and target
station, we use Bo

i and Bt
i to represent his start station set and

target station set, respectively.
Bike Trip. To make PBS more intelligent, we consider that

each bike trip contains three segments. As shown in Fig. 1,
one user issues a request at the start location, and then he
borrows a bike in the start station. After that, he returns the
bike to the target station and walks to the terminal location.
And we give the definition of bike trip as follows:

Definition 1(Bike Trip): A bike trip hi for ui contains three
segments: one riding segment from the start station boi to the
target station bti and two walking segments, one from user’s
start location loi to the start station boi and the other from the
target station bti to his terminal location lti . The bike trip can
be denoted as hi = (loi , b

o
i , b

t
i, l

t
i). And we use the trip set

Hi = {h1, h2 . . . hK}, to represent all potential trips.

Start Location Start Station Target Station Terminal Location

Fig. 1. The Three Segments of Trip

Time Cost. The time cost of each segment is associated with
two parameters: its distance and velocity. For each segment,
there may have more than one available path. However,
different path might have different distance. To simplify the
problem, we suppose that users are so lazy that they tend to
choose the shortest path to save time, thus the minimal distance
among all available paths is set as the segment distance.

For user ui, the bike trip hi contains three segments: one
riding segments and two walking segments. Therefore, the
time cost E(hi) of trip hi contains three parts: the first one
is the walking time wi from start location to start station,
the second one is the riding time vi from start station to
target station, and the third one is the walking time w′

i from
target station to terminal location. The time cost E(hi) can be
calculated by the following equation.

E(hi) = wi + vi + w′
i (1)

B. Problem Formulation

In this paper, the process of online planning trip for users,
is called Online Trip Planning problem (OTP). To be specific,
the OTP problem is how to online plan the optimal trip hi for
the arrived user, with aim to improve his trip quality.

For each user, his trip quality is related with two factors: 1)
the three-segment trip time; 2) the success of three-segment
trip. In the OTP problem, each trip time contains three parts
and both the bike borrowing and returning should be success-
ful. However, the available bikes and empty docks at bike
stations are time-varying, which makes the problem complex.

Table I lists the major symbols used throughout this paper.

TABLE I
SYMBOL AND DESCRIPTION

Sym. Description Sym. Description
u User U User set
b Bike station B Bike station set
p Resource pair P Resource pair set
h Trip H Trip set
Ac

i bi’s available bikes As
i bi’s available docks

E Trip time w Walk time
v Ride time dmax Maximal walking distance
T Time period τ Time slot
G Bike route graph
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III. ONLINE MATCHING TRIP PLANNING

In this section, we introduce the Online Matching Trip
Planning algorithm (OMTP) and prove the theoretical bound
of OMTP.

A. Basic Idea

Intuitively, the success of complete three-segment bike trip
can be determined by giving the bike to borrow and the dock
to return. Thus, we regard the bike in the start station and the
dock in the target station as one bike-dock pair. And, we give
the definition of bike-dock pair set as follows:

Definition 2(Bike-Dock Pair Set): A bike-dock pair set Pi

of user ui is the collection of all available bike-dock pairs.
Each bike-dock pair pj contains two parameters: the first one
is the available bike c in the start station boi , and the second
one is the empty dock s in the target station bti.

Pi = {pj = (c, s)|c ∈ boi , b
o
i ∈ Bo

i , s ∈ bti, b
t
i ∈ Bt

i} (2)

In Fig. 2, there are two bikes in the station b1 and two docks
in the station b2. Thereby, the bike-dock pair set Pi of user ui

can be denoted as Pi = {p1, p2, p3, p4}. And the complete trip
hi for user ui can be determined with the selected bike-dock
pair. For example, if pair p1 is selected, the complete trip of
user ui can be denoted by hi = (loi , b1(c1), b2(s2), l

t
i).

1b 2bo
il

t
il3p1p

2p

4p

1s

2s

1c

2c

Start Location

Terminal  Location

Start Station Bike 

DockTarget Station

Fig. 2. The Bike-Dock Pair

To improve the trip quality, the quality Q(pj) of the bike-
dock pair pj is set to the inverse of three-segment trip time,
which is denoted by the following equation:

Q(pj) =
1

w + v + w′ (3)

With the above analysis, the OTP problem can be formulat-
ed as the well-known online matching problem, which can be
described as: the problem is how to match the optimal bike-
dock pair pj with user ui. The online trip planning problem
based on online matching can be formulated as:

max

|Pi|∑
j=1

Q(pj)xpj
(4)

s.t.
|Pi|∑
j=1

xpj = 1 (5)

|Pi| ≥ 1 (6)

Here, Eq. (5) means that only one bike-dock pair can be
allocated to ui. xpj

is a decision variable: xpj
= 1 if pj is

allocated to ui; otherwise xpj = 0. Eq. (6) means that there
should be at least one existing bike-dock pair for user ui, or
ui is failed.

B. Algorithm Design

Intuitively, in order to achieve high trip quality, OMTP
matches the bike-dock pair which has the maximal quality
with the online-arrived user. That is the main idea of OMTP.
Note that each bike-dock pair is locked after allocating, which
means each bike-dock pair can be allocated for only once.
OMTP is detailed in Algorithm 1.

Algorithm 1 Online Matching Trip Planning
Input: User: ui;
Output: Trip hi

1: Get start station set Bo
i and target station set Bt

i for ui;
2: Construct bike-dock pair set Pi for ui;
3: for bike-dock pair pj in Pi do
4: Calculate the bike-dock pair quality Q(pj) for pj ;
5: Record the bike-dock pair quality Q(pj) for pj ;
6: end for
7: Find the bike-dock pair p∗j which has the maximum quality

Q(p∗j ) among Pi;
8: Construct the trip hi based on p∗j ;
9: Output trip hi;

Specifically, OMTP finds the start station set Bo
i and the

target station set Bt
i for user ui. In the meanwhile, OMTP

constructs the bike-dock pair set Pi for user ui based on Eq.
(2). For each bike-dock pair pj in Pi, OMTP calculates its
bike-dock quality Q(pj) based on Eq. (3) and record it. After
that, OMTP finds the bike-dock pair p∗j in Pi which has the
maximum quality Q(p∗j ). Then, OMTP constructs the trip hi

based on the bike-dock pair p∗j . In the end, OMTP outputs the
trip hi, then the algorithm stops.

C. Time Complexity Analysis and Pruning Strategy

In this part, we analyze the time complexity of this OMTP
algorithm, and then we present the pruning strategy to reduce
time complexity.

In Algorithm 1, get the start station set and the target station
set takes 2N steps. And we denote the size of the start station
set, the size of the target station set by S, T . In line 2, construct
bike-dock pair takes S × T steps because each start station
and each target station are traversed. After constructing, we
suppose the size of the bike-dock pair is K. Next, in line 3-6,
calculate and recode the quality takes total 2K steps due to it
traverses the whole set. Similarly, it takes K steps to find the
maximal bike-dock pair in line 7. And construct the trip in
line 8 and output the trip in line 9 take 2 steps. Thus, the sum
of the OMTP algorithm takes 2N + S × T + 3K + 2 steps.
Therefore, the time cost of this OMTP algorithm is given by
O(S × T ).
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Through the above analysis, we know the time cost of the
OMTP algorithm is related to the value of S and T . Combined
with real-life experience, users prefer to choose the adjacent
bike stations to borrow and return. Therefore, we set the
maximal walking distance dmax for users. And users can only
look for the start stations and target stations within the range
of dmax. Consequently, the time cost of the OMTP algorithm
can be reduced rapidly.

D. Algorithm Performance Analysis

In OMTP, each bike-dock pair doesn’t take part in the
subsequent request processing after allocating. Suppose the
number of initial bike-dock pairs in PBS is n. And the number
of users that OMTP can satisfy in the ideal case is also n.

In the ideal case, there are n users and n available bike-dock
pairs, and they form a matching matrix. The kth user’s request
corresponds to the n−k+1 column of matrix. By the Karp’s
proving, the expected matching result of the online matching
algorithm is same as that of the random matching algorithm
on this matrix [12]. And the strategy of the random matching
algorithm is to randomly select one bike-dock pair for current
user. Therefore, the worst case’s performance of OMTP can be
evaluated by proving the expected performance of the random
matching algorithm, and the theoretical lower-bound of OMTP
is described as follows.

Suppose that the matching matrix of the random matching
algorithm in the worst case is M . When the xth user comes,
there are still y eligible bike-dock pairs in M , which are likely
be any set of y lines in the first n−k+1 rows of M . At time
t, the number of remaining users and the number of remaining
bike-dock pairs are denoted by α(t) and β(t), where Δα =
α(t+1)− α(t) and Δβ = β(t+1)− β(t). OMTP algorithm
processes one user’s request each time, thus Δα = −1. If
the diagonal entry in the t+ 1st column is eligible but is not
matched, Δβ = −2, otherwise Δβ = −1. Due to the set of
remaining eligible bike-dock pairs is randomly chosen from
among the first n− t, we get the following equation:

E[Δβ] = −1− β(t)

α(t)
× β(t)− 1

β(t)
= −1− β(t)− 1

α(t)
(7)

Next, we get the new equation:

E[Δβ]

E[Δα]
= 1 +

β(t)− 1

α(t)
(8)

The possibility of having k available bike-dock pairs at
time t of OMTP is the same as that of the random matching
algorithm. Based on the proof proposed by Karp [12], when
the possibility tends to 1 and n tends to infinity, Eq. (8) can
be transformed into the following equation:

dβ

dα
= 1 +

β − 1

α
(9)

Meanwhile, suppose α = β = n, we get

β = 1 + α(
n− 1

n
− ln

α

n
) (10)

Obviously, when only one bike-dock pair is eligible, the
remaining user number is n

e + o(n). Therefore, the expected
matching number is n(1− 1

e ) + o(n). Thus, the lower-bound
of the OMTP algorithm is 1− 1

e .
Theorem 1: The theoretical lower-bound of OMTP is 1− 1

e .

IV. ONLINE GROUP TRIP PLANNING

In this section, we introduce the Online Group Trip Planning
problem (OGTP) and give the problem formulation based on
the network flow model. And then, we design a heuristic
algorithm to solve it.

A. Discussion

In the public bike services, the users keep coming and the
system online allocates bike-dock pair for the arrived user.
However, the resources at bike stations are restricted, including
the available bikes and empty docks. Besides, the resources at
each bike station may become unbalanced as time goes on,
due to each bike station has different inflows and outflows.
Therefore, the conflicts among users are inevitable, especially
in the rush hour.

Take an example, there are two users uploading the request
to the system simultaneously, namely u1, u2. User u1 and
user u2 have similar start location and they share the same
start station b1. Unfortunately, user u2 has only one avaible
station to borrow which is b1. However, there is only one
bike in station b1. If we pre-allocate the bike in station b1 to
user u1, there are no available bikes for user u2, and u2 is
failed. Therefore, there exists conflicts among u1 and u2. In
this problem, we call the station b1 is the conflicting station
and user u1, u2 are two conflicting users. Similarly, if user u1

and u2 share the same target station which has only one dock,
they can also become conflicting users.

Intuitively, if we allocate trips for a group of user at one
time, we can improve overall trip quality. Thus, we divide the
time period T into L equal-length time slots and each slot
τl ∈ T, l = 1, 2, · · · , L. And the user set Ul is the collection
of appeared users in one time slot τl.

B. Bike Route Graph

In this part, we introduce the bike route graph and the
specific process of drawing a bike route graph. And then, we
give the OGTP problem based on the bike route graph.

Bike Route Graph. Having the bike station set B, the user
set Ul and the maximal walking distance dmax, we can draw
users’ potential bike routes from their start locations to target
locations on a new graph, called the bike route graph Gl. In
Fig. 3, there is an example of bike route graph, which contains
three users. The solid circles and triangles are the nodes in the
graph, in which the triangles represent the bike station. And
we use the dotted lines and the solid lines to represent users’
walking segments and riding segments, respectively. The line
from user’s start location to his target location is one potential
trip. In the figure, u1 has four potential trips and u2 has two
potential trips. For each bike station node bi on Gl, we add one
virtual node b′i and a virtual edge e(bi, b

′
i) connecting them.
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Fig. 3. An example of bike route graph

Bike Route Graph Drawing. The bike route graph shows
all the users’ potential routes among stations. Next, we intro-
duce the specific process of drawing a bike route graph:

1) During each time slot, online-arrived users upload their
personal information to the server, including start location,
target location and appear time. And the server collects users’
uploaded information, records their appear time and adds them
into the user set Ul.

2) At the end of time slot, we calculate and find user’s
start station set and target station set within the range of the
maximal walking distance dmax. Besides, we filter out those
users who can’t find start station or target station. Next, we
update the resources at each bike station according to the
current situation in PBS, including the available bikes and the
empty docks.

3) Next, we get all potential bike trips for filtered users and
draw their potential bike trips on Gl. In the following context,
we set the capacity Ae and cost Ce of edge e(i, j):

Capacity. The capacity of the virtual edge connecting the
start station and its virtual node is set as the number of
available bikes of this bike station. While the capacity of the
virtual edge connecting the target station and its virtual node is
set as the number of empty docks. For example, in Fig. 3, the
capacity of edge e(b1, b

′
1) is assigned with the available bike

station of station b1. The capacity of edge e(b5, b
′
5) is assigned

with the empty docks of station b5. The initial capacity Ae of
edge e(i, j) is defined as follows:

Ae =

⎧⎨
⎩

Ac
s i = bs, j = b′s

As
t i = bt, j = b′t

∞ Otherwise
(11)

Cost. The initial cost of each edge is set to the time cost
between two vertices, which can be calculated by dividing the
trip distance by the walk (ride) velocity. For example, in Fig.
3, the cost of edge e(lo1, b1) and edge e(b′5, b

t
1) is set as walking

time, while the cost of edge e(b′1, b5) is set as riding time. The
initial cost Ce of edge e(i, j) is defined as follows:

Ce =

⎧⎪⎪⎨
⎪⎪⎩

w i = lok, j = bs
w′ i = b′t, j = ltk
v i = b′s, j = bt
0 Otherwise

(12)

where bs and bt represent the start station symbol and the
target station symbol, respectively. For example, in Fig. (4),
b1, b2 and b3 belong to bs, while b4, b5 and b6 belong to
bt. lok and ltk are user uk’s start location and target location,
respectively. The time cost E(h) of one potential trip h for
uk from the start location lok to the target location ltk on Gl is
redefined by the following equation:

E(h) = C(lok,b
o
k)

+C(bok,b
o
k
′) +C(bok

′,btk)
+C(btk,b

t
k
′) +C(btk

′,ltk)
(13)

After the above steps, we have the filter user set Ul, the
bike route graph Gl, the time cost E(h) of each potential trip.
This can lead to the OGTP problem as follows.

Given the initialized bike route graph Gl, the OGTP prob-
lem is how to plan trips for users on Gl, with aim to improve
overall trip quality under the resource restricts.

C. Problem Formulation

The OGTP problem is an integer multi-commodity flow
(IMCF) problem [13]. The bike route graph Gl is a directed
graph. On the graph Gl, the size of nodes is n and the number
of edges is m. There are K users needed to be sent from their
start locations to terminal locations.

The formulation of the OGTP problem based on IMCF is
given as follows:

minCT
K∑

k=1

Xk (14)

s.t.
K∑

k=1

Xk ≤ A (15)

DXk = dk, k = 1, 2, ...,K (16)

Xk ≥ 0, k = 1, 2, ...K (17)

where Eq. (14) is a target function with aim to minimize over-
all trip time. Eq. (15) is the edge maximum flow constraint.
Eq. (16) is the node flow equilibrium equation. Eq. (17) is the
flow non-negative constraint.

Here, Xk = [x1, x2, · · · , xm] is the flow vector of user
k, C = [C1, C2, · · · , Cm]T and A = [A1, A2, · · · , Am]T are
the cost and capacity vectors of all edges, respectively. D =
[Dil]n×m is the incidence matrix between nodes and edges.
For the lth edge e(i, j), setting Dil = 1 and Djl = −1. The
node flow vector dk = [dk1 , d

k
2 , ..., d

k
n], is defined as follows:

dki =

⎧⎨
⎩

1 i = lok
−1 i = ltk
0 Otherwise

(18)

D. Algorithm Design

In the OGTP problem, we plan trips for a group of users
at one time, which eases short-term conflicts to some extent.
Besides, the target of OGTP is to minimize trip time of all
users, with aim to improve the overall trip quality. OGTP is a
NP-C problem. And we design a heuristic algorithm to find a
feasible solution, named the OGTP algorithm.
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Intuitively, with aim to minimize the overall trip time, we
greedily and iteratively plan the shortest-time trip for each
user. For user uk, we find his shortest-time trip based on Eq.
(13), which is (lok, b

o
k, b

o
k
′, btk, b

t
k
′
, ltk). Once the capacity Ae of

edge e(bok, b
o
k
′) is equal to 0, we increase Ce of edge e(bok, b

o
k
′)

and replan the affected trips. The same operation for edge
e(btk, b

t
k
′
). The algorithm keeps on running until find a feasible

solution. Finally, the allocated bikes and docks will be reserved
for users. OGTP is detailed in algorithm 2.

Algorithm 2 Online Group Trip Planning
Input: Bike Route Graph: Gl;
Output: Trip Set: Hl;

1: The Unallocated User Set UU = Ul;
2: The Allocate Trip Set Hl = ∅;
3: while UU �= ∅ do
4: for user uk in UU do
5: Find the trip hk: (lok, b

o
k, b

o
k
′, btk, b

t
k
′
, ltk) for uk on Gl;

6: if A(bok,b
o
k
′) or A(btk,b

t
k
′) ≤ 0 then

7: Trip Subset H = ∅;
8: for trip hi : (l

o
i , b

o
i , b

o
i
′, bti, b

t
i
′
, lti) in Hl do

9: if {boi == bok} or {bti == btk} then
10: A(boi ,b

o
i
′) += 1, A(bti,b

t
i
′) += 1;

11: Add hi into H;
12: end if
13: end for
14: Delete H from Hl;
15: C(bok,b

o
k
′) or C(btk,b

t
k
′) += o;

16: else
17: A(bok,b

o
k
′) -= 1, A(btk,b

t
k
′) -= 1;

18: Add hk into Hl and delete uk from UU ;
19: end if
20: end for
21: end while
22: Output the trip set Hl;

Note that the increasing number o is set by us. And we set
a cost threshold D for each virtual edge to avoid no solution
problem. Once Ce of edge e exceeds D, we will stop the
algorithm and greedily allocate trips for unallocated users until
the resources are exhausted.

Take an example, in Fig. 4, the cost and capacity of edge e
are represented by Ce(Ae). We find the shortest trip for user
u1, which is (lo1, b1, b

′
1, b4, b

′
4, l

t
1). And the available bike in

b1 and the empty dock in b4 are pre-allocated for u1. Then,
we find the shortest trip for u2, which is (lo2, b1, b

′
1, b6, b

′
6, l

t
2).

And the bike in b1 has been allocated to u1, which indicate
that there exists conflict between u1 and u2. Intuitively, this
conflict can be solved by increasing C(b1,b′1) of edge (b1, b

′
1).

If C(b1,b′1) of edge (b1, b
′
1) increase to 2, the shortest path of

user u1 is changed to (lo1, b2, b
′
2, b4, b

′
4, l

t
1). Then, the conflict

between u1 and u2 is solved. Similarily, if user u2 chooses her
shortest trip, there are no empty docks for user u3. And this
problem can be solved by increasing C(b6,b′6) of edge (b6, b

′
6).
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Fig. 4. An example of OGTP algorithm

V. EXPERIMENT RESULTS

In this section, we design two kinds of experiments- Gener-
ated Data Based and Real Data Based, to test the performance
of the above two algorithms.

A. Methodology

In this part, we introduce the bike station set and preset
several relative parameters. Besides, we give the experimental
measurements of this paper.

The bike station data set utilizes the real data in New York
City. The data can be crawled from the net, which contains
the information of each bike station, e.g. ID, location, total
capacity. The number of bike stations in the set is 936. For
each user, the walking speed is set as 5km/h [14], and the
riding speed is set as 20km/h [15].

Measurements. We apply two experimental measurements
to test the performance of our algorithms.

• Average trip time (ATT): It’s the average trip time cost
of successful users who arrive at their target locations.

• Successful Service Ratio (SSR): It’s the ratio of suc-
cessful users among all users in time period T , which is
calculated by the number of successful users divided by
the total user number.

B. Generated Data Based Experiment and Analysis

In this part, we show the simulation results of OMTP and
OGTP based on the generated data. Besides, we test the
influence of different parameters and analyze the possible
reasons.

Before the simulation, the length of time period T is set
as 4 hours. The length of each time slot τl is set as 30s. The
increasing number o is set as 50 and the cost threshold D is
set as 1000.

In each simulation, the users’ trip data is generated random-
ly, including start location, terminal location and appear time,
where the appear time is subject to normal distribution. And
the number of available bikes and empty docks at each bike
station is equally initialized.

In the experiment, we mainly test the impact of two dif-
ferent parameters. The first parameter is the user number |U |,
and the second parameter is the maximal walking distance
dmax. We consider 18 different user numbers and 5 different
maximal walking distances. The specific value of parameters
is presented in Table II.
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TABLE II
EXPERIMENT SETTINGS

Factor Setting
Station number 936
Walking speed 5km/h
Riding speed 20km/h
User number {[1k,12k]|Δ = 1k}∪{[15k,40k]|Δ = 5k}

dmax 100m, 200m, 300m, 400m, 500m

Each simulation with different user number and maximal
walking distance repeats 10 times and records the average
result.

Average trip time. Fig. 5 illustrates the ATT of OMTP and
OGTP. The bigger dmax results in higher ATT. The reason is
that users need to walk longer to borrow or return bikes as
dmax increases.

In Fig. 5(a), we show the ATT of OMTP and OGTP when
|U | = 10k. Obviously, the ATT of OMTP and OGTP is
almost the same. It is because that the conflicts among users
are virtually nonexistent when |U | is small. Both OMTP
and OGTP allocate the optimal trip for each user. However,
the difference between OMTP and OGTP increases with the
increment of user number. When |U | = 40k, the ATT of
OGTP is bigger than that of OMTP, shown in Fig. 5(b). As |U |
gets bigger, the conflicts among users become serious. OGTP
sacrifices some users’ trip time to avoid conflicts, while OMTP
always tries to allocate the maximum-quality bike-dock pair to
each user. Therefore, in the scope of ATT, OMTP outperforms
OGTP when dmax is big enough.
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Fig. 5. The ATT of OMTP and OGTP

Successful Service Ratio. Fig. 6 shows the SSR of OMTP
and OGTP. The SSR changes along under different dmax.
Under the same |U |, the SSR increases along with dmax,
which is because users have more potential trips as dmax

increases.
In Fig. 6(a), we show the SSR of OMTP under different

dmax. When |U | becomes bigger, the SSR of OMTP reduces
rapidly. The reason is that the number of initial bike-dock
pairs in PBS is finite, which is not sufficient to support all
users’ demand as |U | increases. In Fig. 6(b), the SSR of
OGTP decreases slightly with the increment of user number,
which is because the bikes and docks will be reserved for
users in OGTP. When |U | exceeds a certain threshold, the
SSR decreases.
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Fig. 6. The SSR of OMTP and OGTP

C. Real Data Based Experiment and Analysis

In this part, we give the experimental result based on the
real-world human mobility data set in New York City and
analyze the possible reasons.

We get the bike station data and the trip data on the Internet.
The trip data utilizes the data from 2020-02-01 to 2020-02-29,
which contains 29 days of data. In this experiment, the time
period T chooses the peak period for bike borrowing: from
15:30 to 19:30. And we analyze the trip data and the bike
station data in Fig. 7 and Fig. 8, respectively.

Fig. 7 shows the average number of real trip data from 15:30
to 19:30. Obviously, the number of trips in working days is
higher than on weekends, which indicates that users tend to
use bikes as a commuting tool. By calculation, we get that the
average number of trips in this period is 9865. In reality, the
actual demand is larger than that in record because the existing
data set doesn’t contain those who fail to borrow bikes.
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Fig. 8 shows the probability distribution function of the
number of adjacent stations when the range of each station
is 500m. From the picture, we know that over three-fourths
of the stations have more than 2 adjacent stations. Therefore,
the maximal walking distance dmax is also set as 500m, which
can ensure that there exists stations around the start location
and target location of each user.

In this experiment, the length of each time slot and the
increasing number are set as same as that in the generated
based experiment. Since each trip record only contains the
information from the start station to the target station, there is
no user’s start location and target location. So we randomly
set two locations around the start station and target station as
the start location and the target location.
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We propose a benchmark algorithm, called Real Trip Plan-
ning algorithm (RTP). In RTP, we allocate the recorded pair
of stations to borrow and return for each user. Besides, the trip
time of each user is recalculated by Eq. (1). In the experiment,
we plan trips for the users with three algorithms and record
the daily results.

Fig. 9(a) shows the ATT of the three algorithms. From
the picture, we can see that the fluctuation of ATT of three
algorithms is relatively small. The average ATT of OMTP,
OGTP and RTP is 11.96 minutes, 11.72 minutes and 15.55
minutes, respectively. The ATT of OMTP and OGTP is pretty
close, while the ATT of OMTP and OGTP is nearly 23.1%
lower than that of RTP. Fig. 9(b) shows the SSR of OMTP
and OGTP. The RTP algorithm plans the real trip for each user
so the SSR of RTP is 100%. The average SSR of OGTP is
95.28%, which is 4.72% lower than that of RTP and is 40.71%
higher than that of OMTP.
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Fig. 9. The Performance of OMTP and OGTP

VI. DISCUSSION

Algorithm application. This paper designs the OMTP and
OGTP algorithm to address the OTP problem. To ensure the
success of each trip, we give the deterministic bike-dock pair
for each user. In the real scenario, the available bikes and
the empty docks at bike stations are shared and unattended,
and each user has different characteristics and preferences.
These features pose challenges to apply online trip planning
algorithm in reality.

Algorithm analysis. In the Generated Data Based experi-
ment, we know that the conflicts have a great impact on the
above two algorithms. OMTP only considers one user’s inter-
est, while OGTP considers a group of users’ interest which
eases the short-term conflicts. However, both two algorithms
don’t consider the long-term returns in PBS. Thus, better
algorithms should be designed for PBS.

VII. RELATED WORK

In this paper, we introduce two algorithms to address
the OTP problem. Next, we review some related work in
three categories: Public Bike System, Online Matching, and
Network Flow.

A. Public Bike System

The public bike system was first launched at 1965 in
Amsterdam [16]. After two times of evolution, now the third
generation city bike system has been launched in 712 cities in
2014 all over the world [17].

In recent years, the explosive growth of bicycles also brings
some potential problems to the city. To solve it, a mass
of researchers have paid attention to PBS problem, such as
the redistribution problem [5] [6], system prediction prob-
lem [2] [3] [4] and station location determination [18] [19].
Moreover, the effective trip planning of bike-sharing schemes
for users has also been proposed. Li et al. focus on the static
trip planning problem and illustrate the complexity of this
problem [11]. Zhang et al. model the static trip planning
problem as a bike trip selection game and propose a distributed
algorithm [10].

As far as we know, there is few work focusing on the online
trip planning problem. Yoon et al. put forward a prediction
model based on ARIMA and design a trip advisor system [20].
Hu et al. present a fine-grained probabilistic forecast method
and design a novel architecture which helps to the balance bike
usage [9]. These existing works are probability-based. Howev-
er, the probabilistic predict model may not very accurate and
timely for each user, and it will impose a heavy burden on the
server.

B. Online Matching

Nearly three decades age, Karp and Vazirani et al. introduce
the online matching problem [12]. For decades, there has been
a mass of literature on the online matching problem and its
variants [21] [22] [23].

In recent years, the problem of spatial crowdsourcing is
becoming popular. The problem is how to allocate tasks
to suitable crowd workers. To more fit the actual situation,
online matching has been recently widely used in some spatial
crowdsourcing problem [24] [25] [26]. In the domain of
transportation, online matching is widely used in the taxi
dispatching problem [27] [28].

In this problem, we should consider the unique character-
istics of the public bicycle and dynamics of resources at the
bike stations, which is different from the above problem.

C. Network Flow

The Network Flow Problem is an old problem, which has
been introduced in 1956 by Ford et al. [29]. The network flow
problem has been extensively studied in a variety of domains
including wireless sensor, route planning etc. [30] [31].

Zhang et al. consider the complete bike route may contain
the exchanging station and solve the bike route planning
problem with the minimum cost flow algorithm. [32]. How-
ever, his works did not take the conflicts among users into
consideration.

Different from these works presented above, this paper
studies the online trip planning problem, which meets the
actual demand.
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VIII. CONCLUSION

This paper mainly focuses on the online trip planning
problem (OTP) for PBS where users arrive online. To address
it, we design two algorithms, called OMTP and OGTP. And we
conduct two different experiments- Generated Data Based and
Real Data Based. In the Generated Data Based experiment, we
reveal the impact of different parameters with the generated
trip data. And the simulation result shows that OGTP helps
more people find trips than OMTP, while OMTP can better
save users’ trip time. In the real data based experiment, we
validate our proposed algorithms with the real trip set in New
York City. The results show that both OMTP and OGTP save
23.1% time per trip on average. And OGTP helps nearly
95.28% of users successfully receive the service of PBS.
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