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Abstract

Bike-Sharing System (BSS) is a convenient service deployed in many big cities to alleviate

the last-mile problem. However, the explosion of users in BSS causes the inconvenience

of bike utilization. Much efforts have been devoted to performing resources prediction,

redistribution to help with BSS operation. But there are only a few works focus on

trip planning, and none of them notice the complete bike trip in BSS composes of three

segments: from user’s start point to a start station, from the start station to a target

station, and from the target station to user’s terminal point. To study the case, this

paper addresses a static trip planning problem by considering the bike utilization conflict

in BSS so as to maximize the number of the served users and minimize their trip time. The

problem is formulated as the weighted k-set packing problem. We then design a Greedy

Trip Planning algorithm (GTP) and a Humble Trip Planning algorithm (HTP) to solve

it. For comparison, we design a Random Trip Planning algorithm (RTP) as a benchmark.

Extensive simulation results show that GTP and HTP outperform RTP, and reveal the

impact of different factors on the performance of our algorithms.
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1. Introduction

Bike-sharing system (BSS) offers convenient public service by allowing any person to

borrow and return bike at the stations nearby [1]. It has been widely deployed in many

famous cities all around the world in recent years to solve the last-mile problem, such as

Hangzhou, New York, and Chicago [2][3]. More and more users choose the bike-sharing5

service in their daily life so that the explosion of user amount brings some new pressure

to both user and BSS. Now, users are often not able to borrow or return bikes from or to

stations because of the serious imbalance of resources in the BSS, i.e. some stations lack

available bikes or docks. To relieve the pressure, the prediction is designed to estimate the

resources [4–10] and the redistribution is adopted to alleviate the imbalance of resources10

for the BSS [11–18]. From the user’s point of view, the station pair selection is proposed

to help user borrow and return bike [19–21].

From the BSS’s view, it is necessary to alleviate the imbalance by redistributing bikes

frequently. Several works [11–14] design the routing mechanisms for trucks to move bikes

and the incentive mechanisms for users to help with bike redistribution. However, redis-15

tribution is quite expensive and challenging because of the hardness to know available

resources at each station in real time or in advance. Before the redistribution, it’s basic

to predict the available resources at each station. Some works leverage techniques like

machine learning and data mining to do so based on historical bike-sharing data [4–10].

The resources prediction can estimate the overall amount of available bikes and docks and20

is not very useful for each single user.

From the perspective of bike users, the trip planning is more valuable than resources

prediction or distribution since they can complete the trip by knowing exactly where

to borrow or return bikes. In [19], Ji Won Yoon et al. mention to help users select

the best pair of stations with the minimal time cost and the maximal probability to25

complete trip for bike borrowing and returning after giving the origin and destination

locations. Agostino Nuzzolo et al. design a trip planning system which considers user’s
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preference [22]. However, they care only about single user’s preference and do not take

system wide resources and bike-sharing service quality into account [19, 22–24].

When user uses the bike in the BSS, the complete trip composes of the following three30

segments: from user’s start point to a start station, from the start station to a target

station and from the target station to user’s terminal point. However, to the best of our

knowledge, only a few works notice the trip composition and design corresponding trip

planning algorithm. To study the case, this paper addresses a trip planning problem,

which considers bike utilization conflict caused by insufficient bikes/docks at stations in35

the BSS. The goal of the trip planning is to maximize the number of served users and

minimize their trip time, i.e. to achieve higher service quality of the BSS. We study the

case that all bike resources can be allocated only once and the arriving time of user is not

considered. The problem can be mapped to the weighted k-set packing problem, which

is known to be NP-hard [25]. To solve the problem, intuitively, this paper first designs40

a Greedy Trip Planning algorithm (GTP), in which the bike utilization conflict is not

fully considered during planning trips for users. This paper then designs a Humble Trip

Planning algorithm (HTP) which takes the bike utilization conflict into consideration. For

comparison, this paper designs a Random Trip Planning algorithm (RTP) as a benchmark

in the experiment. Extensive simulation is conducted based on the real dataset of the45

BSS of Hangzhou city. Simulation results show that GTP and HTP outperform RTP

and reveal the impact of the experiment region, the user amount and the user’s maximal

walking range on our algorithms.

Contribution. To summarize, the contributions of our work are as follows:

• To the best of our knowledge, this is the first work that addresses the static trip50

planning problem in the BSS which considers the complete bike trip, system-wide

resources and quality of bike-sharing service.

• We formulate the trip planning problem as a weighted k-set packing problem and

design two heuristic algorithms, namely GTP and HTP, to solve it. For comparison,
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we design RTP for the problem as a benchmark.55

• We implement the three proposed algorithms and conduct extensive simulation based

on the real data of the BSS deployed in Hangzhou city in China. The impact of

different factors on our algorithms is analyzed.

Road map. In Section 2, we present some models in the BSS. We formulate the trip

planning problem and prove its NP-hardness in Section 3. To solve the problem, we design60

the GTP algorithm and HTP algorithm in Section 4 and 5 respectively. We evaluate our

algorithms by extensive simulation in Section 6 and put some discussions in Section 7.

Then we review some state-of-the-art works in Section 8 and conclude the whole paper in

Section 9.

2. System Model65

This paper considers the BSS with the bike station set B and the user set U, where

B = {b1, . . . , bN} and U = {u1, . . . , uM}, N and M are the numbers of bike stations and

users respectively. In B , each bike station bi is associated with a location li, the number of

available bikes Ao
i , and the number of available docks At

i. Obviously, Ao
i ≥ 0 and At

i ≥ 0.

In U, each user ui is associated with a start point loi , a terminal point lti, a start station70

set Bo
i , and a target station set Bt

i . B
o
i contains all stations that ui can borrow a bike and

Bt
i contains all stations that ui can return the bike.

In this paper, we consider that each user ui’s trip is a complete bike utilization process

with three segments, which is more close to practice. Specifically, ui first walks from his

start point loi to a start station boi . After borrowing a bike, he rides to a target station bti75

to return the bike and then walks to his terminal point lti. Fig. 1 shows an example of a

complete trip. The incomplete bike utilization process, i.e. users are not able to borrow

or return bikes, is not considered in this paper. This paper defines trip in the BSS as

follows.
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Definition 1 (Trip). In the BSS, a trip for user ui, denoted by ti = (loi , b
o
i , b

t
i, l

t
i), is a80

complete bike utilization process with three segments: from user’s start point loi to a start

station boi , from the start station to a target station bti and from the target station to user’s

terminal point lti.

Figure 1: The trip with three segments
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Figure 2: An example of user ui’s trip set Hi

Each trip consumes some time, which is the sum of the time consumption of the three

segments, denoted by τ1i , τ2i , τ3i respectively. The time is related to the length of each85

segment and the speed at which users travel through each segment. This paper defines

the trip time as follows.

Definition 2 (Trip Time). The trip time C(ti) of trip ti is the overall time to complete

ti:

C(ti) = τ1i + τ2i + τ3i (1)

In the BSS, each user may borrow and return a bike at different bike stations. There-90

fore, he has several available trip options to reach his terminal point. These trips are

included in a set, named the trip set.

Definition 3 (Trip Set). A trip set of user ui, denoted by Hi = {t1i , . . . , tKi }, is the
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collection of all trips available to ui, and can be calculated by the following equation.

Hi = {ti = (loi , b
o
i , b

t
i, l

t
i)|boi ∈ Bo

i , b
t
i ∈ Bt

i} (2)

Let H denote the union of all users’ trip sets, we have95

H =
⋃
ui∈U

Hi (3)

For example, in Fig. 2, b1, b2 are two start stations and b3, b4 are two target stations

for user ui. The four stations and ui’s start and terminal points compose four different

trips, denoted by t1i , t
2
i , t

3
i and t4i . We have Hi = {t1i , t2i , t3i , t4i }.

Most symbols used in this paper are summarized in Table 1.

Table 1: Symbol and meaning

Symbol Description Symbol Description

u User b Bike station
U User set B Bike station set
t Trip Ao

i bi’s available bikes
C(t) Trip time At

i bi’s available docks
H Trip set h Allocated trip set
Q(t) Trip quality dmax Maximal walking range
l Location d(li, lj) Distance between li and lj

3. Problem Formulation100

To help users access the bike-sharing service more conveniently and improve the service

quality of the BSS, this paper introduces the trip planning, which intends to allocate a trip

to each user in the system. This section first describes the trip allocation by considering

the bike utilization conflict, then formulates the trip planning problem and shows its

hardness.105

3.1. Trip Allocation

Intuitively, in order to save time, all users would like to look for the nearest stations to

borrow or return bikes. However, because of the imbalance of resources at bike stations,
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some users may not be able to borrow or return bikes at their nearest stations, i.e. the

bike utilization conflict among users’ trips happens. Specifically, if a bike station bi has110

insufficient bikes or docks to fulfill users’ trips, bike utilization conflict among these trips

happens at the bike station, and bi is called conflicting start station or conflicting target

station correspondingly. If a trip contains a conflicting station, it is called a conflicting

trip. Otherwise it is a non-conflicting trip. For example, there are three trips, as trip ti of

user ui, trip tj of user uj and trip tk of user uk shown in Fig. 3. All stations have enough115

available bikes and docks except b1 and b5. Station b1 has only one bike and station b5

has only one available dock. Therefore, ti and tj are two trips in conflict at b1 while tj

and tk are in conflict at b5. We have that b1 and b5 are two conflicting stations. ti, tj and

tk are three conflicting trips.
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Figure 3: Bike utilization conflict

Considering there are bike utilization conflicts in the BSS, some users can access bike120

resources and the others may not. Therefore, trips in the BSS should be carefully allocated

to users so that more users can access the bike-sharing service and they can reach their

terminal points quicker. We include all the allocated trips into an allocated trip set,

denoted by h. Obviously, h ⊂ H . Note that some users may not have an allocated trip

because of the limited bike resources, and the set h is not unique under different trip125

allocation strategy.

3.2. Trip Planning Problem

In this paper, the process of allocating trips to users in the BSS is called trip planning.

The goal of trip planning is to help more users access the bike-sharing service and help
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them reach their terminal points quicker. That is, when planning trips for users, the130

number of served users should be maximized and the trip time of these users should

be minimized. In order to consider the two optimization problems together, this paper

introduces the service quality of the BSS. Before that, we first define the trip quality as

follows.

Definition 4 (Trip Quality). The quality Q(ti) of a trip ti in the BSS is inversely pro-135

portional to its trip time.

Q(ti) =
1

C(ti)
(4)

The total quality of all allocated trips is defined as the service quality of the BSS. If

there is no allocated trip, the service quality of the BSS is 0. According to Eq. (4), more

users who finish their trips lead to higher service quality of the BSS. And if these users

can get their terminal points quicker, the service quality of the BSS will be higher. Thus,140

by maximizing the service quality of the BSS, we can maximize the number of served

users and minimize their trip time at the same time. Therefore, the objective of the trip

planning in this paper is to maximize the overall quality of all allocated trips.

Problem formulation. The trip planning problem is described as: Given the bike

station set B and the user set U, the trip planning problem is to find the allocated trip set145

h so that the total quality of all trips in h is maximized. The problem can be formulated

as:

max
∑
ti∈h

Q(ti) (5)

s.t. Ao
j ≥

∑
ti∈h

I(boi , bj),∀bj ∈ B (6)

At
j ≥

∑
ti∈h

I(bti, bj), ∀bj ∈ B (7)

Where I(bi, bj) is a function whose value is 1 when bi and bj are the same bike station,

and 0 otherwise. Eq. (6) and (7) indicate the resource constraints of each station in the
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(a) Trips in H
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(b) Trips in h

Figure 4: Trip planning

For example, suppose there are two users ui and uj in the BSS, Fig. 4(a) shows all

available trips of these users, i.e. the trip set H . The goal of the trip planning is to find

two trips among all available trips as shown in Fig. 4(b), and the trip quality of each of

the two trips should be as high as possible so that the two trips have the maximum total

trip quality. The two trips form the allocated trip set h.155

3.3. Hardness of Trip Planning Problem

This part shows the trip planning problem can be reduced to the NP-hard problem:

the weighted k-set packing problem [25], which is described as follow: Given a collection

of sets I = {I1, . . . , In}, each of which has an associated weight and contains at most k

elements drawn from a finite basic set G, the task is to find a collection with disjoint sets160

of maximum total weight.

For a trip ti = (loi , b
o
i , b

t
i, l

t
i) of user ui, he borrows one bike from the start station boi ,

and consume one dock at a target station bti. Let set Ii = {ui, a bike at boi , a dock at bti}

and the weight of Ii is the trip quality of ti. Let I = {I1, . . . , In} be the collection of all

possible Ii and G be the set of all users and all available bikes and docks in the BSS. It’s165

easy to find that I is drawn from G. The trip planning problem can be translated to:

find a collection of disjoint sets from I so that the total weight of these disjoint sets is

maximized. By this way, the trip planning problem is reduced to a maximum weighted

3-set packing problem. Since the k-set packing problem is NP-hard for any k ≥ 3, even
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in the unweighted case, the maximum weighted 3-set packing problem is NP-hard [25].170

Therefore, we have the following theorem.

Theorem 1. The trip planning problem given in (5), (6) and (7) is NP-hard.

Due to the NP-hardness of the trip planning problem, we design two heuristic algo-

rithms, GTP and HTP, in the following two sections to solve it.

4. Greedy Trip Planning175

In this section, we present GTP to solve the trip planning problem.

4.1. GTP Algorithm

Intuitively, in order to maximize the total quality of all trips in h, GTP greedily and

iteratively allocates the trip which has the maximum quality in H . Note that when a trip

is allocated to a user ui, the available bikes at the start station and the available docks at180

the target station should be reduced by 1, and all trips of the user should be deleted from

H because he needs only to complete one trip to reach his terminal point. At the same

time, all trips that have no bikes or docks available should also be deleted from H . GTP

is summarized in Algorithm 1.

Algorithm 1 Greedy Trip Planning Algorithm

Input: Bike station set: B ; User set: U;
Output: Allocated trip set: h;
1: h = ∅;
2: Construct the trip set H and calculate all trips’ quality;
3: while H 6= ∅ do
4: Find the maximum-quality trip t∗i = (loi , b

o
i , b

t
i, l

t
i) in H ;

5: h = h ∪ {t∗i };
6: Update bike resources at boi and bti;
7: Delete Hi and all trips do not have available bikes/docks from H ;
8: end while

Specifically, GTP first initializes the allocated trip set as an empty set and constructs185

the trip set H based on Eq. (2) and (3). The quality of all trips in H are calculated based
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on Eq. (4) at the same time. While the set H is not empty, GTP greedily allocates a trip

in each round. In each round, GTP first finds the maximum-quality trip t∗i = (loi , b
o
i , b

t
i, l

t
i)

in H and allocates the trip to its corresponding user ui by adding it to the allocated trip

set h. After that, the resources at the stations boi and bti are updated, i.e. the amount of190

bikes at boi and the amount of available docks at bti are both reduced by 1. Then all trips

of ui are removed from the trip set H by deleting all trips start from loi and end at lti, and

all trips that do not have available bikes or docks are also removed from H . When there

is no trip in H , GTP outputs the allocated trip set h and stops.

4.2. Trip Pruning195

In the BSS, a user can borrow a bike and return it to any station. However, it is too

complex to consider all these stations in trip planning because there are hundreds of bike

stations in the BSS. To tackle the problem, this part introduces a strategy to prune the

trip of users.

In reality, some stations may be too far from the user or his terminal point. He may200

not be willing to walk that far to borrow a bike or to his terminal point after returning

the bike. Therefore, when performing trip planning, trips that contain such stations can

be pruned from the trip set of each user by setting a maximal walking range to reduce

the complexity of the trip planning. Let dmax be the maximal walking range, the start

station set Bo
i and the target station set Bt

i of user ui can be calculated by the following205

two equations.

Bo
i = {bj |bj ∈ B,Ao

j > 0, d(loi , lj) < dmax} (8)

Bt
i = {bj |bj ∈ B,At

j > 0, d(lj , l
t
i) < dmax} (9)

where d(li, lj) is a function which measures the distance between li and lj . Note that the

distance measurement of this function could be any existing method, such as haversine

distance, Manhattan distance, the shortest distance along streets etc. By this way, the210
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trips that require users to walk too far are pruned from the trip set Hi of each user.

4.3. Theoretical Performance

This part presents the theoretical performance of GTP and starts with the time com-

plexity. Given that there are N bike stations and M users in the BSS, GTP first takes

1 step to initialize the set h. Constructing the trip set H takes MN2 steps because the215

start station set and target station set of each user are traversed and the start station and

target station of each user could be any bike station in the BSS. Then in each round, let m

be the users that do not have a trip allocated. It takes mN2 steps to find the maximum-

quality trip in H because each of the m users has at most N2 available trips and H has at

most mN2 trips. Adding the maximum-quality trip to h and updating the bike resources220

take two steps. Deleting trips from H takes mN2 steps because H has to be traversed.

Since only one trip is allocated in each round, the “while” loop costs
∑M

m=0(2mN
2 + 2)

steps. To sum up, GTP costs N2M(M + 1) +MN2 + 2M + 1 steps. Therefore, the time

complexity of GTP is O((NM)2).

By applying the trip pruning, the trip set size of each user is reduced a lot. Let Nd be225

the maximum size of all start station sets and target station sets of all users after applying

the trip prunning. The time complexity of GTP can thus be given by O((NdM)2). Note

that if dmax is set properly, N2
d can be far less than N2. The time consumption of GTP

can thus be reduced a lot.

As the trip planning problem is proved to be a weighted 3-set packing problem and the230

greedy approach of a weighted k-set packing problem is proved to be a k-approximation

algorithm [25]. Therefore, the approximation ratio of GTP is 1
3 , which is the ratio between

the result obtained by the algorithm and the optimal result.

Theorem 2. The approximation ratio of GTP is 1
3 .

4.4. Local Optimality of GTP235

When there are bike utilization conflicts in the BSS, GTP may incur the problem of

only achieving local optimality. This part presents a simple example as shown in Fig. 5.
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Figure 5: An example of local optimality of GTP

For simplicity, we set the example as follows. There are two users u1 and u2. Each

user has two available trips, as t11, t
2
1 of user u1 and t12, t

2
2 of user u2 shown in Fig. 5(a)

and 5(b) respectively. The trip quality of these trips are: Q(t11)=10, Q(t21)=8, Q(t12)=9,240

Q(t22)=3. All bike stations have enough bikes and docks except b1, which has only one

bike. As both u1 and u2 tend to choose their maximum-quality trips, i.e. u1 tends to

choose t11 and u2 tends to choose t12, there is bike utilization conflict between u1 and u2

because of insufficient resources at bike station b1.

By applying GTP, we have that t11 is allocated to u1, and t22 is allocated to u2. The245

total quality of the two trips is 13. Let’s consider another way of trip allocation: t21 is

allocated to u1 and t12 is allocated to u2. The total quality of the two allocated trips is

17. The new way of trip allocation achieves more total quality than that of GTP, which

demonstrates the local optimality of GTP.

5. Humble Trip Planning250

Since the bike utilization conflict is not fully considered in GTP, in this section, we

present HTP to take the conflict into consideration.

5.1. Basic Idea

In the example presented in Section 4.4, when changing u1’s trip from t11 to t21, his

trip quality is reduced by 2, and when changing u2’s trip from t12 to t22, his trip quality is255

reduced by 6. In this paper, the trip t21 and t22 are called the alternative trips and the quality

reduction 2 and 6 are called the trip-changing costs of t11 and t12 respectively. Intuitively,
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it is harder to find an alternative trip for the trip which has higher trip-changing cost, so

the trip should be allocated to its corresponding user first to achieve higher service quality

of the BSS. By doing so, the trip t12 is allocated to u2 first, and the total quality of the260

BSS is 17, which is higher than that achieved by GTP.

Based on the above analysis, we present the basic idea of HTP. When there is no bike

utilization conflict in the BSS, the maximum-quality trips of all users can be allocated

directly. But when there are bike utilization conflicts, the maximum-quality trip which

has higher trip-changing cost should be allocated first to its corresponding user so as to265

achieve higher service quality of the BSS.

A basic problem left is how to calculate the trip-changing cost. To do so, the alternative

trip should be found in the first. In this paper, the alternative trip of a trip ti ∈ Hi

is defined as the maximum-quality trip among all trips in Hi that do not contain the

conflicting stations of ti. For instance, in Fig. 6, all trips of user ui is sorted descendingly270

by their trip quality from up to down, i.e. Q(t1i ) ≥ Q(t2i ) ≥ Q(t3i ). Bike station b1 is a

conflicting station in both trip t1i and t2i . According to the definition, we have that the

alternative trip of t1i is t3i . After finding the alternative trip of ti, its trip-changing cost

can be calculated, which is defined as the difference between the trip quality of ti and its

alternative trip. If the alternative trip of ti cannot be found, the trip-changing cost of ti275

is set as Q(ti).
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Figure 6: An example of alternative trip
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5.2. HTP Algorithm

This part presents the design of HTP in detail, which eliminates bike utilization con-

flicts among users’ maximum-quality trips in the first. That is, HTP first greedily and

iteratively allocates a maximum-quality trip which has the maximum trip-changing cost280

among all conflicting trips to its corresponding user. After all conflicts been eliminated, the

maximum-quality trips of the remaining users are allocated directly. HTP is summarized

in Algorithm 2.

Algorithm 2 Humble Trip Planning Algorithm

Input: Bike station set: B ; User set: U;
Output: Allocated trip set: h′;
1: Up = U, h′ = ∅;
2: Construct Hi for each ui ∈ Up and calculate all trips’ quality;
3: while Up 6= ∅ do
4: Select the maximum-quality trip for each ui ∈ Up from their Hi to form a set H ′;
5: Select all conflicting trips from H ′ to form a set H ′′;
6: if H ′′ 6= ∅ then
7: Calculate the alternative trip and the trip-changing cost for ti ∈ H ′′;
8: Find the trip t∗i = (loi , b

o
i , b

t
i, l

t
i) which has the maximum trip-changing cost among

all trips in H ′′;
9: h′ = h′ ∪ {t∗i };

10: Update bike resources at boi and bti;
11: Delete t∗i ’s corresponding user from Up;
12: Delete trips that do not have available bikes/docks from Hi for each ui ∈ Up;
13: else if H ′′ = ∅ then
14: h′ = h′ ∪H ′;
15: Update bike resources at the start and terminal stations of each trip ti ∈ H ′;
16: break;
17: end if
18: end while

Specifically, HTP first initializes Up = U and h′ = ∅. The set Up consists of all users

that no trip is allocated to them. Then HTP constructs the trip set Hi for each user ui285

in Up based on Eq. (2) and calculates all trips’ quality based on Eq. (4). Next, while the

user set Up is not empty, HTP allocates trips round by round. In each round, HTP first

select the maximum-quality trip for each user ui ∈ Up from their corresponding trip sets

Hi to form a set H ′. Then HTP collects the bike resources demand at each bike station to
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compute the conflicting stations among all trips in H ′ and selects all conflicting trips from290

H ′ into a set H ′′. Then there are two cases: 1) If H ′′ is not empty, which means there are

trips in conflict. To eliminate conflicts, HTP finds the alternative trip for each trip in H ′′

and calculate their trip-changing cost. It then finds a trip t∗i = (loi , b
o
i , b

t
i, l

t
i) which has the

maximum trip-changing cost among all trips in H ′′ and allocates it to its corresponding

user by adding t∗i to the allocated trip set h. Then the resources at the bike stations boi295

and bti are updated. Next, the trip t∗i ’s corresponding user is deleted from the set Up, and

all trips that do not have a bike at the start station or do not have an available dock at

the target station are deleted from the trip set Hi of each user ui in the set Up. After that,

if there are still some users in Up, HTP goes into the next round. Otherwise, it outputs

the allocated trip set h′ and stops. 2) If H ′′ is empty, which means there is no conflict300

remaining in the BSS, all trips in H ′ can be added to h′ directly. Then the resources at

the start and terminal stations of each trip ti ∈ H ′ are updated. After that, HTP outputs

the allocated trip set h′ and stops.

Similar to GTP, the trip pruning presented in Section 4.2 can also be employed in

HTP to reduce its complexity.305

5.3. Theoretical Performance

Given that there are N bike stations and M users in the BSS, this part describes

the time complexity of HTP. In HTP, it first takes 1 step to finish the initialization.

Constructing the trip set Hi for each user in Up and calculating all trips’ quality take

MN2 steps. Then in each round, let m be the users that remain in Up. Selecting the310

maximum-quality trip for each user in Up takes mN2 steps. Selecting all conflicting trips

from H ′ takes 2m steps. The worst case of HTP is that all trips in H ′ are in conflict

and only one trip can be allocated in each round, so we only consider the case H ′′ 6= ∅.

Calculating the alternative trip and the trip-changing cost for each trip in H ′′ takes mN2

steps because there are at most N2 trips in Hi for each user ui ∈ Up. Then finding the315

trip t∗i takes m steps. Adding the trip t∗i to h′ and updating the bike resources take two
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steps. Deleting t∗i ’s corresponding user from Up takes m steps. And deleting the trips

that do not have available bikes/docks from Hi for each ui ∈ Up takes mN2 steps. So

the “while” loop costs
∑M

m=0(3mN
2 + 4m + 2) steps in total. To sum up, HTP costs

MN2 + 3
2M(M + 1)N2 + 2M(M + 1) + 2M + 1 steps. Therefore, we have that the time320

complexity of HTP is O((NM)2).

By applying the trip pruning presented in Section 4.2, the time consumption of HTP

can be reduced a lot. Let Nd be the maximum size of all start station sets and target

station sets of all users after applying the trip planning, the time complexity of HTP can

be given by O((NdM)2).325

6. Experiment Evaluation

This section conducts extensive simulation to evaluate our algorithms based on real

bike station dataset of Hangzhou Public Bicycle.

6.1. Methodology

Since there is few existing approach aiming at promoting BSS’s service quality by trip330

planning, this section proposes a Random Trip Planning algorithm (RTP) as a benchmark.

It describes the character of the bike utilization in daily life by randomly and iteratively

selecting a user ui in U, then allocating the maximum-quality trip in the trip set Hi to

him.

In the experiment, several impact factors of the trip planning algorithms are consid-335

ered, including the experiment region, the user amount and the maximal walking range.

Three regions in Hangzhou city of China are utilized as experiment regions, as the

region A, B, C shown in Fig. 7. These regions locate in the central area of Hangzhou city,

containing commercial centers, scenic zones and resident zones. The bike station dataset

of Hangzhou Public Bicycle, one of the world’s largest BSSs, is utilized in our experiment.340

The dataset contains ID, location, capacity, etc. of each bike station deployed in Hangzhou

Public Bicycle. The total number and the total capacity of these bike stations in these

17



Figure 7: Experiment regions

experiment regions are presented in Table 2. In the experiment, the total number of bikes

and available docks at each bike station are initialized in two ways: equally and randomly.

Since bike resources can be used only once in this paper, the trips in the allocated trip set345

is bounded by the minor one of the total bikes and total docks in the experiment region.

Table 2: Bike stations in 3 experiment regions

Region Total stations Total capacity

A 645 14207

B 513 11260

C 307 6820

This paper considers different user amounts in the experiment, i.e. |U| = 0.5k, 1k, 2k,

3k, 5k, 7k, 10k, 15k, 20k, 25k, 30k, 35k, 40k, 45k, 50k. For all users, the start points and

terminal points are randomly initialized in the experiment region. The walking speed of

each user is set as 5km/h [26] and the riding speed of user is set as 20km/h [27].350

To explore the impact of the maximal walking range of users, this paper considers

6 different maximal walking ranges in the experiment, i.e. dmax = 100m, 200m, 300m,

500m, 1000m, 1500m. In the experiment, the haversine distance is adopted to measure

the distance between any two locations.

For each specific setting of different region, user amount and maximal walking range,355
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this paper repeatedly runs the simulation for 20 times and records the average results. The

simulation is performed on a laptop with Intel(R) Core(TM) i7-3610QM 2.3GHz CPU and

8GB RAM.

Metrics. Considering that the goal of the trip planning is to maximize the number of

served users and minimize their trip time, this paper applies the following three metrics360

to evaluate the performance of the proposed algorithms.

• Average trip time (ATT): It is the average trip time of all allocated trips.

• Allocated trips (AT): It is the total number of allocated trips, which indicates

the number of served users.

• Trip allocation ratio (TAR): It is the ratio of users who have an allocated trip365

among all users and calculated by AT divided by |U|.

6.2. Simulation Results

The simulation results of equally and randomly initialized bike resources at each bike

station are almost the same. We thus only present the results of the case that bike

resources are initialized randomly.370

Average trip time. Fig. 8 shows the ATT of the three algorithms. The ATT of the

three algorithms changing with |U| in region C is shown in Fig. 8(a). When |U| is small, as

|U| < 5k shown in the figure, the ATT of each algorithm is almost the same and increases

along with |U|. It is because some users have to walk and ride a little further to complete

their trips when there are more users. When |U| gets bigger, as |U| ≥ 5k shown in the375

figure, the ATT of RTP almost keeps stables and is bigger than that of HTP and GTP.

It is because the allocated trips of RTP are not intentionally selected and only reflect the

baseline performance. Therefore, in the scope of ATT, GTP and HTP outperform RTP

when |U| is big enough. The ATT of HTP is bigger than that of GTP, which is because

GTP always tries to allocates the maximum-quality trip among all trips of users first.380
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(d) GTP, dmax = 500m

Figure 8: The ATT of GTP, HTP and RTP

Fig. 8(b) and Fig. 8(c) show the ATT of GTP and HTP changes along with |U| under

different dmax in region A. For the two algorithms, bigger dmax results in bigger ATT,

which is because some users can access bike resources at further stations when dmax is

bigger so that their trip time increases.

Fig. 8(d) shows the ATT of GTP changes along with |U| in different regions when385

dmax is 500m, where smaller region results in lower ATT, as the average distance between

user’s start point and terminal point is much smaller in the smaller region than that in

the bigger region. HTP also has the same results.

Allocated trips. Fig. 9 plots the total AT of the three algorithms and the upper

bound of AT. The total AT of HTP and RTP are almost the same and more than that390

of GTP. As RTP does not contribute much on reducing ATT and increasing the total

number of AT, we can conclude that GTP and HTP outperform RTP. In the following

content, we evaluate the performance of GTP and HTP.

Fig. 10 shows the difference of AT between HTP and GTP, i.e. the total AT of
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Figure 9: The total number of AT of 3 algorithms in region A
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Figure 10: The difference of AT between HTP and GTP
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Figure 11: The TAR of GTP and HTP

HTP minus that of GTP. It shows that HTP can always allocate more trips than GTP.395

Fig. 10(a) and Fig. 10(b) plot the difference of AT between HTP and GTP changing with

|U| under different dmax and in different experiment regions. For a specific region and

dmax, the difference between AT of HTP and GTP increases when |U| is small. However,

it decreases when there are more users. The difference between AT of HTP and GTP

becomes 0 at last for there is an upper bound of AT. Fig. 10(c) and Fig. 10(d) show400

the impact of dmax on the difference of AT between HTP and GTP. For different |U| and

different regions, a very small dmax and a very big dmax, as dmax < 100m and dmax > 500m

shown in the two figures, lead to bigger difference of AT between HTP and GTP. While

a medium dmax, as 100m < dmax < 500m shown in the two figures, results in a smaller

difference.405

To conclude, we have that GTP and HTP perform better than RTP. When |U| < 5k,

HTP performs better than GTP. Because when |U| < 5k, the ATT of GTP and HTP are

almost the same, as shown in Fig. 8(a), and the AT of HTP is always higher than that of
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GTP, as shown in Fig. 10(a), 10(b). However, when |U| ≥ 5k, there is a tradeoff between

GTP and HTP in maximizing the number of served users and minimizing their trip time,410

because the ATT of GTP is lower than that of HTP, while the AT of HTP is higher than

that of GTP.

Trip allocation ratio. Fig. 11 shows how these factors affect the TAR of GTP and

HTP. In this part, both GTP and HTP have similar results. As shown in Fig. 11(a), due

to there is an upper bound of AT, the TAR decreases along with |U|. Fig. 11(b) shows415

that the TAR increases along with dmax for a specific |U|, which is because more available

trips can be allocated to each user when dmax is bigger. Fig. 11(c) shows the TAR of

GTP changes along with |U| in different regions when dmax is 1500m. At the beginning,

smaller region results in higher TAR. With the increment of user amount, the TAR in

smaller region becomes lower, which is because the AT in a small region reaches the upper420

bound first. Fig. 11(d) shows the TAR changes with dmax in different regions of HTP

when |U|=3k, which confirms bigger dmax results in higher TAR.

7. Discussion

Trip planning in real scenario. In real scenario, there are many challenges to

perform trip planning: bike resources can be used repeatedly, the bike utilization demand425

is not known and changes dynamically, the arriving time of users are unknown and the

trip allocation is invariable. Our algorithms can be applied in real scenario to plan bike

trips for users in every short time period, such as the system can plan trips for all users

who request trip planning service in every minute. However, considering all the challenges

in bike trip planning in real scenario, the decision model of users, waiting time of users430

and incentive mechanism could be considered in the future work.

Conflict measurement. Simulation results in this paper reveal the performance of

GTP and HTP are related to user amount, user’s maximal walking range and region size.

Intuitively, these factors affect the bike utilization conflict in BSS. To our best knowledge,

almost all existing works do not consider these impact factors together to provide efficient435
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ways to measure bike utilization conflict in a BSS. We also leave it to our future work.

8. Related Work

Public transportation and bike-sharing system has attracted tremendous attention in

recent years [28–33]. In this part, we review the state-of-the-art works related to BSS.

System prediction. Many works leverage machine learning techniques to estimate440

bike resources in the BSS. Andreas Kaltenbrunner et al. [4] predict the available bikes

at each station some minutes/hours ahead by using the Auto-Regressive Moving Average

(ARMA) model. Min Yang et al. [6] predict the number of available bikes at bike stations

by an improved back propagation neural network. Bei Chen et al. [7] design a system

to predict bike availability at bike stations, which takes into account exogenous variable,445

such as weather and time. The system also predicts how long a user has to wait for a bike

when there’s no bike available. Romain Giot et al. [8] predict the global bike utilization of

the BSS by using various regressors from the state-of-the-art. Yexin Li et al. [9] propose

a hierarchical prediction model to predict the check-out/check-in of each cluster in the

BSS. Zidong Yang et al. [5] propose a spatio-temporal bicycle mobility model based on450

historical bike-sharing data, and design a traffic prediction mechanism on a per-station

basis with sub-hour granularity. Some works predict the trips in the BSS. Jiawei Zhang et

al. [34] design a model to predict trip destination and trip duration by utilizing a Multiple

Additive Regression Tree and a Lasso regression model. Divya Singhvi et al. [35] predict

pairwise bike demand for the Citi Bike system of New York City.455

System operation. Another important topic is BSS operation. Benefited from the

system prediction, many works are designed to help the BSS operate efficiently. Since

bike utilizations cause imbalanced bike resources in the BSS, operator of the system has

to redistribute these bikes by trucks. Tal Raviv et al. [11] plan routs for trucks to solve

a static redistribution problem in the BSS. Adish Singla et al. [12] propose a schema to460

incentivize users to contribute to redistributing bikes. Julius Pfrommer et al. [13] design

a hybrid solution for the dynamic bike redistribution problem, in which the routing of
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trucks and a dynamic incentive scheme are both considered. Some works provide real

time trip planning for users, but they only consider the problem in single user scope. Ji

Won Yoon et al. [19] mentioned to help users select the best pair of stations with the465

minimal time cost and the maximal probability to finish trip after giving the origin and

destination. In [22], Agostino Nuzzolo et al. design a trip planning system which considers

user’s preference. In the BSS, mobile crowdsourcing techniques could be utilized to obtain

user trip information and provide bike station information for users [36, 37].

System design. Some works make great contributions to BSS design. In [38], Long-470

biao Chen et al. leverage open data to predict bike utilization and recommend the optimal

placement of bike stations. Jenn-Rong Lin et al. [39] develop a mathematical model to

consider the interests of customers and investors when building the BSS. Juan Carlos

Garćıa-Palomares et al. [40] design a GIS-based approach to locate stations based on a

location-allocation model and determine the capacities of these stations by calculating the475

potential bike utilization demand.

k-set packing problem. The weighted k-set packing problem is usually solved

through approximation algorithm. Barun Chandra uses greedy local improvement and

achieves the approximation ratio of 3/2(k + 1) [25]. Piotr Berman presents an algorithm

to achieve 2/k approximation ratio [41]. However, these approaches are too complex to480

use. In this paper, we present algorithms that has the same complexity as the simple

greedy algorithm to solve the bike trip planning problem.

Different from the existing works presented above, this paper addresses a trip planning

problem which considers the system-wide resources and service quality of the BSS.

9. Conclusion485

This paper addresses a trip planning problem, which considers the bike utilization

conflict in BSS so as to maximize the number of served users and minimize their trip time.

We formulate the trip planning problem as the well-known weighted k-set packing problem,

which is NP-hard. In order to solve the problem, this paper designs two algorithms, namely
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GTP and HTP. For comparison, this paper designs RTP as benchmark. We conduct490

extensive simulation based on real bike station dataset of Hangzhou Public Bicycle to

evaluate our algorithms. Simulation results show that GTP and HTP outperform RTP.

Meanwhile, the results reveal the impact of different experiment region, user amount and

user’s maximal walking range on the performance of GTP and HTP. Some future works

may include conflict modeling and online trip planning.495
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