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Abstract—Existing work on flooding in wireless sensor net-
works (WSNs) mainly focuses on single-packet problem, while
the work on sequential multipacket problem is surprisingly little.
This paper proposes OppCode, a new opportunistic network-
coding-based flooding architecture for multipacket dissemination
in WSNs, where both unreliable and correlated links commonly
exist. Instead of flooding a single packet each time, each node
encodes multiple native packets chosen from a specific fixed-
size page to an encoded packet and then rebroadcasts it further.
The key idea consists of two parts. One is opportunistically cod-
ing decision, in which each node grasps every possible coding
opportunity greedily to maximize its aggregate coding gain of
all neighbors based on the probabilistic estimation of packets
each neighbor already has. The other is paged collective acknowl-
edgements (ACKs), in which one rebroadcast acts as not only an
implicit ACK of successful disseminations of all packets in the
entire page for the sender, but also probabilistic ACK to update
page-scale per-packet coverage estimations for its neighbors in a
batch. Experiments based on extensive simulations and 21-node
testbed show that OppCode significantly increases performance of
multipacket flooding in terms of reliability, transmission overhead,
delay, and load balance.

Index Terms—Link correlation, multipacket flooding, network
coding, wireless sensor networks (WSNs).

I. INTRODUCTION

I N WIRELESS sensor networks (WSNs), flooding is a
fundamental communication primitive supporting many

important high-level protocols and applications, such as data
dissemination [1], time synchronization [2], key management
[3], and multihop routing [4]–[6]. An implicit assumption in
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traditional flooding mechanisms [7], [8] is that the underlying
wireless links are independent of each other. However, recently,
the existence of link correlation in wireless networks is con-
firmed and explored by Srinivasan et al. [9], Zhu et al. [10], and
Wang et al. [11], which can be utilized for further performance
improvement of flooding protocols. Having deep insights into
this phenomenon, Zhu et al. [10] successfully reduces the num-
ber of reception acknowledgements (ACKs) by employing a
mechanism named collective ACKs in which one sender can
infer the success of a transmission to its receiver based on the
ACKs from other neighboring receivers.

Although most existing flooding solutions are aiming at
addressing single-packet dissemination, lots of applications of
WSNs often have the need of flooding multiple sequential pack-
ets to complete a specific mission. For example, in over-air
reprogramming applications, the program images to be dissem-
inated by flooding protocol may reach sizes up to 128 kB [1],
which must be fragmented to numerous small packets due to
the fact that the default maximum size of message payload in
TinyOS is only 29 B.

In WSNs with unreliable and correlated links, applying
single-packet flooding algorithms directly to handle multiple-
packet flooding problems will cause substantial performance
degradation due to the following factors.

1) Diversity of packet loss patterns: As loss patterns vary
across different next-hop nodes, each next-hop node may
lose different packets. The sender must keep sending
missed packets of every next-hop node until every next-
hop node receives all the packets in a page, which will
consequently increase contention and collisions in the
network.

2) Redundant ACKs: In either per-node ACKs [7], [8] or col-
lective ACKs [10], a sender cannot use the ACK for a
specific packet to estimate the reception of other packets
sent from the same sender if no inter-packet dependance
is assumed.

3) Increased delay: Usually, to decrease contention, single-
packet flooding algorithm triggers consecutive packet
transmissions at traffic-adaptive time intervals. This will
lead to significant increase in end-to-end data dissemina-
tion delay.

In this paper, we present a comprehensive study on multi-
packet flooding problem in the context of WSNs with unreliable
and correlated links, and first propose OppCode, a new oppor-
tunistic network-coding-based multipacket flooding algorithm.
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The driving idea behind our design is network coding, which
allows the relay nodes to mix the information content in the
packets before forwarding them.

The opportunistic coding-based flooding design consists of
the following enabling components: the first is opportunistic
listening, in which each node estimates its neighbors’ recep-
tions of flooding packets based on the condition of link quality
and correlation. The second is coding decision, in which a node
can decide whether it has an opportunity for coding or not based
on the reception estimation of its neighbors. If the node get the
opportunity, it encodes (i.e., XOR) certain packets and sends
the encoded packet. To measure coding opportunity, we pro-
pose a metric called total (or aggregate) coding gain. Then, a
greedy coding decision algorithm is proposed. The third is cov-
erage updating, in which the sender and receivers update the
coverage distribution across its neighbors after a packet is sent
or received, respectively.

The key novelty of this work lies in the opportunistically
coding decision-making, in which each node locally grasps
any possible coding opportunity to encode packets for rebroad-
casting based on the estimation of the packets each neighbor
already has, so that the aggregate coding gain of all neighbors
is maximized while the transmission overhead and dissemina-
tion delay are kept as low as possible. Specifically, the major
contributions of this work are as follows.

1) To the best of our knowledge, this is the first compre-
hensive study of opportunistic multiple-packet flooding
problem in WSNs with unreliable links and high-link
correlations.

2) We propose a new opportunistic network-coding-based
multipacket flooding architecture, named OppCode,
based on per-packet coverage estimation.

3) A greedy coding decision algorithm is proposed to maxi-
mize the aggregate coding gain.

This paper is organized as follows. Section II discusses the
related work. The motivation of this paper is discussed in
Section III. Then, Section IV introduces the key mechanisms of
OppCode. Section V describes our main protocol design, fol-
lowed by its evaluation in Sections VI and VII. Section VIII
concludes this paper.

II. RELATED WORK

Flooding plays important roles in most applications of WSNs
[12]–[16], which supports kinds of high-level protocols and ser-
vices [1], [2], [4], [17]–[24]. However, most existing flooding
protocols (e.g., DCB [7], RBP [8], and collective flooding (CF)
[10]) only focus on addressing single-packet flooding prob-
lem in essence, where multipacket flooding tasks are treated
as multiple independent single-packet subtasks. In this paper,
our work aims at handling sequential multiple-packet flood-
ing problem utilizing inter-packet dependance relationship in
a specific page.

This work uses network coding as its core idea aiming
at lowering energy cost, in which the sender mixes multi-
ple packets before rebroadcasting instead of flooding single
packet. Network coding has been proven that it has the capa-
bility to improve network throughput and energy efficiency.

A pioneering work [25] by Ahlswede et al. has demonstrated
that the fact mixing information from different flows in interme-
diate nodes in the network can achieve the broadcast capacity,
and many recent papers follow this idea and extend it to other
aspects of networking.

Due to the broadcast nature of wireless networks, network
coding has been adopted to support various protocols in wire-
less networks, e.g., COPE [26] and UFlood [27], and achieved
vast performance gains by permitting intermediate nodes to
carry out algebraic operations on the incoming data. A concept
of opportunistic coding is first introduced by COPE [26], which
is designed for unicast traffic in some specified wireless envi-
ronment. We try to extend the opportunistic coding approach to
broadcast communication pattern in WSNs.

Another motivation of the proposed OppCode protocol [28]
is the observation of link correlation generally existing in wire-
less networks, which is deeply explored by Srinivasan et al. [9],
Zhu et al. [10], and Wang et al. [11]. Compared with CF [10],
our work combines network coding with link correlation to han-
dling multipacket flooding problem, which aims at achieving
the goal of both energy efficiency and network reliability.

Work [29] has similar idea with ours that applies network
coding to WSNs with link correlation. It shows the poten-
tial of link correlation and network coding-based solutions for
data dissemination in WSNs, which adopts random linear cod-
ing methods that need to solve linear equations for decoding
native packets and thus has high computation cost compared
with XOR coding that we employed. Moreover, when a node
receives an encoded packet that is not innovative, this packet
is useless that makes no contribution to decoding. This feature
leads to additional energy waste.

Work [30] studies network coding and link correlation in
WSNs from another point of view, which analyzes the impact of
link correlation on network coding and builds a general model
for both unicast and broadcast protocols. While in OppCode,
we propose a detailed page-based multipacket coding mech-
anism under the existence of link correlation. Though both
making coding based on link correlation aiming at transmis-
sion efficiency, [30] and our work employ totally different
coding strategies designed for different networking models and
applications.

III. MOTIVATION

In this section, we first demonstrate the existence of link cor-
relation, then we illustrate the benefit of network coding on
broadcast protocols.

A. Existence of Link Correlation

Link correlation has been studied in [9] and [10] show-
ing that when a sender sends out a broadcasting packet, the
receptions at its receivers are not independent of each other.
To verify this statement, an indoor experiment was conducted.
In this experiment, 29 TelosB nodes are deployed to form a
star topology. Sender is the central node and the others act as
receivers. The sender broadcasts a packet in every 150 ms, and
every packet is identified by a sequence ID. The total number
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Fig. 1. Statistics of receiving probability.

Fig. 2. Benefit of network coding.

of packets broadcasted is 2000. For each pair of receivers, we
counted the number of packets received by nodes with higher
link quality (denoted as Nh) when nodes with lower link qual-
ity (denoted as Nl) have received the same packet successfully,
i.e., Pr(Nh|Nl). We compare Pr(Nh|Nl) with the number of
successful receptions at Nh regardless of Nl, i.e., Pr(Nh). We
found that for about 86% of all the receiver pairs, the former
is greater than the latter, i.e., Pr(Nh|Nl) ≥ Pr(Nh). From the
distribution shown in Fig. 1, we can clearly see that the condi-
tional probability Pr(Nh|Nl) is closer to 1 than Pr(Nh), which
verifies the existence of link correlation.

B. Benefit of Network Coding

Network coding has been widely used in broadcast protocols
as it has great potential to improve the performance of broad-
cast applications by mixing multiple packets in the intermediate
nodes. Fig. 2 shows the benefit of network coding on broad-
cast protocols, in which a block with solid borderline means
a received packet and a block with dashed borderline means
a lost packet. The receivers v1 and v2 received packet p1 and
p2, respectively, and also needed one packet p2 and p1, respec-
tively. In traditional ways, the sender u needs two transmissions
to make sure its receivers receive packet p1 and p2 if the link
quality is assumed 100%. With the help of network coding, the
number of packets transmitted from sender u can be reduced
from 2 to 1 by broadcasting a XORed packet p1 ⊕ p2.

From the above example, we see that the nature behind net-
work coding is that the forwarder encodes the native packets
and broadcasts them with a coded packet using one transmis-
sion, instead of sending multiple packets one by one.

IV. KEY MECHANISMS

The main objective of OppCode is to reduce the total
number of transmissions while providing reliable multipacket

Fig. 3. Example of page division.

dissemination. In OppCode, sequential packets to be dissem-
inated are grouped into fixed-size pages. A node is called
page-covered (for short, covered is used in the rest of this paper)
when it receives all the packets of a specific page. Covered
nodes are responsible for rebroadcasting this page further to
uncovered nodes in the network. There are two key mechanisms
in OppCode design as follows.

1) Opportunistic network coding: Network coding is con-
ducted opportunistically in a specific page using a greedy
coding decision method before the encoded packet is sent.

2) Paged collective ACKs considering link correlation: A
flooding packet overheard or received serves as both a
direct and paged collective ACKs for the sender and its
neighbors, respectively.

The mechanisms of OppCode are based on per page, which
are different from traditional per-packet-based ACKs. For a
flooding task that needs to broadcast multiple packets, the first
step is to divide a packet stream into few pages with fixed
length. Assuming that the stream contains W packets and the
page size is |Page|, we can get � W

|Page|� pages, as shown in
Fig. 3.

It is worth noting that page is the basic processing unit not
only for collective ACKs but also for opportunistic coding.
The page size directly influences the performance of OppCode
scheme, i.e., if one page contains too many packets, the cost for
network coding decision is quite large. So, it is obvious that the
page size should be limited to some reasonable range to avoid
high computation overhead. We will evaluate the performance
of OppCode while varying the page size based on extensive
simulation-based experiments.

A. Opportunistic Network Coding

In OppCode, network coding is opportunistically determined
based on a node’s estimation about its neighbors, where each
node learns its neighbors’ per-packet coverage in a specific
page, and then a sender makes coding decision when detect-
ing any coding opportunity. In this section, we first present
a simple example to illustrate this idea in Section IV-A1 and
then describe the detailed design of coding decision scheme in
Section IV-A2.

1) Conceptual Example of Coding Decision Making:
Network coding allows the intermediate node to mix content in
the packet before forwarding it, and its aim is to maximize the
throughout. The core of network coding is to make a good cod-
ing decision, which directly influences the improvement in the
performance of network coding. The following simple example
gives a brief illustration about when and how to make net-
work coding. Apparently, the coding decision should be made
based on the principle that the selected coding option should
make more receivers of an encoded packet able to decode
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Fig. 4. Example of coding decision-making.

TABLE I
GOOD OR NOT OF DIFFERENT CODING OPTIONS

native packets, whose coding benefit is maximized. As shown
in Fig. 4, node A has a three-packet page p1, p2, p3 to be dis-
seminated. Its neighbors perhaps have already been covered by
some of these packets. Assume that A knows what packets each
neighbor has, just as shown in Fig. 4. Several coding options for
A have been listed in Table I. First, A could send p2 ⊕ p3. Since
D has p3 in store, it could be XOR p3 with p2 ⊕ p3 to decode a
native packet p2. However, B does not have p2 or p3, so it can-
not decode the XOR-ed packet. Thus, sending p2 ⊕ p3 would
be a bad coding decision for A, as only one neighbor can benefit
from this transmission. The second option in Table I is also bad,
because only C can decode a native packet p1. The third option
shows a better coding decision for A. Sending p1 ⊕ p2 would
allow both neighbors B and C to obtain one native packet from
a single transmission. Therefore, the best coding decision for
A would be p1 ⊕ p3, which would allow all three neighbors to
decode their respective packets all at once.

2) Aggregate-Coding-Gain-Based Coding Decision: We
first present the aggregate-coding-gain-based coding decision
method, a detailed solution to make coding decisions in
OppCode, based on a metric named aggregate coding gain. This
metric is used to measure the effectiveness of a coding option.
Higher the value of this metric is, more effective the coding
option is. The coding option with highest gain is chosen to be
used for rebroadcasting. Specifically, aggregate coding gain is
defined as the sum of expectation of number of native pack-
ets that each neighbor of the sender can decode successfully as
follows:

Gainu(Ω) =
∑

k∈N(u)

Gaink
u(Ω). (1)

Here, Gainu(Ω) represents the sender u’s coding gain for a
certain coding option Ω. N(u) is u’s neighbor set. Gainku(Ω)
indicates u’s expectation of the quantity of native packets that
k can successfully decode with the option Ω.

Gainku(Ω) can be computed using mathematical expectation
formula as follows:

Gaink
u(Ω) = 1 · Prk + 0 · (1− Prk) (2)

where Prk indicates the probability that k can receive and
decode successfully. Obviously, Prk can be computed as fol-
lows:

Prk = l(u, k) · Prkdecode(Ω). (3)

In the above equation, item l(u, k) represents the link quality
from u to k, while Prkdecode(Ω) indicates that k successfully
decodes a native packet under the condition that the encoded
packet with option Ω is received successfully. So, the aggregate
coding gain can be computed by

Gainu(Ω) =
∑

k∈N(u)

l(u, k) · Prkdecode(Ω). (4)

The next essential step is to compute Prkdecode(Ω), which
depends on two factors: 1) the coding option Ω; and 2) node
ks per-packet coverage status for the specific page. Obviously,
k can decode a specific native packet pi only when the received
packet is encoded with a native packet set natPktSet(Ω) and
k has already received all the packets in this set except pi
before current transmission. So, Prkdecode(Ω)(i) is the proba-
bility that node k just already has all the packets in the set
natPktSet(Ω)− pi.

Fig. 5 shows a more specific example illustrating how aggre-
gate coding gain is computed. For a page with three packets
p1, p2, p3, the sender u has maintained its neighbor’ per-packet
coverage probabilities CovNj

u (i) of its neighbor Nj from u’s
perspective, as shown in Fig. 5. Node u has a few coding
options, i.e., p1, p2, p3, p1 ⊕ p2, p1 ⊕ p3, p2 ⊕ p3, and p1 ⊕
p2 ⊕ p3. Without loss of generality, we take option p1 ⊕ p2 for
instance. The key lies in the computation of PrNj

decode(p1 ⊕ p2).
If Nj has packet p1 or p2 in store before the current transmis-
sion, then it can decode one packet. Otherwise, if Nj has both
p1 and p2 in store, or Nj does not have either packet p1 or p2,
Nj can decode none. From the above analysis, we can easily

get PrNj

decode(p1 ⊕ p2) (j = 1, 2) as follows:

PrN1

decode(p1 ⊕ p2) = CovN1
u (p1) ·

(
1− CovN1

u (p2)
)

+ (1− CovN1
u (p1)) · CovN1

u (p2) = 0.38 (5)

PrN2

decode(p1 ⊕ p2) = CovN2
u (p1) ·

(
1− CovN2

u (p2)
)

+ (1− CovN2
u (p1)) · CovN2

u (p2) = 0.5. (6)

Then, u’s aggregate coding gain for the option p1 ⊕ p2 can
be obtained as follows:

Gainu(p1 ⊕ p2) = l(u,N1) · PrN1

decode(p1 ⊕ p2) + l(u,N2)·
PrN2

decode(p1 ⊕ p2) = 0.5× 0.38 + 0.8× 0.5 = 0.59.
(7)

We can compute the aggregate coding gain of each possible
coding option. The option with highest aggregate coding gain
is chosen to be used for encoding and rebroadcasting.
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Fig. 5. Example of aggregate coding gain computation.

3) Optimization of Coding Option Set: When the page size
is small, the size of coding option set is not very large. But
when it becomes much larger, it might be too hard to choose the
best coding option as the size of coding option set is too large.
For the sake of optimizing the size of coding option set, we
remove some near-zero-contribution coding options that statis-
tically have near-zero contribution to the aggregate coding gain
from the original coding option set by using the following two
theorems.

Theorem 1: For a specific neighboring node k of the sender u
(k ∈ N(u)) in a network, let |pktsPool(k)| denotes the number
of native packets in k’s packets pool that k has already decoded.
If the maximum value of |pktsPool(k)| (k = 1, . . . , |N(u)|) is
represented as Max|pktsPool|, a coding option Ω that encodes
more than Max|pktsPool|+ 1 packets cannot be decoded by
any receiver and thus can be removed.

Theorem 2: Let
⋂
pktsPool(k) represents the the inter-

section set of pktsPool(k) (k = 1, . . . , |N(u)|) of all the
neighboring nodes k. A coding option Ω whose coding set
natPktSet(Ω) is any subset of

⋂
pktsPool(k) will not have

any contribution to the aggregated coding gain and thus can be
removed as well.

B. Paged Collective ACKs

The mechanism of paged collective ACKs allows a node
v to simultaneously infer the per-packet coverage probability
Covkv(pi) of its neighbors k ∈ N(v) for each native packet pi
in a specific page when receiving an encoded flooding packet.

The first component of paged collective ACKs is page-based
rebroadcasting mechanism, a totally new approach taken by
OppCode. In this mechanism, a node starts to rebroadcast only
when it has received a whole page,while a node will com-
pete to rebroadcast once receiving a single packet in existing
single-packet flooding algorithms. The rationale behind this
mechanism lies in that a node can make most effective coding
decision only when it already has all packets in a page.

In OppCode, a transmission from sender u serves as two pur-
poses from the view of v. 1) It is a direct ACK that u is a covered
node, i.e., v can make sure that u has received the whole page,
no matter v can decoded this transmission or not. 2) It is an
implicit collective ACKs for v to update its neighbors’ estima-
tion of per-packet coverage Covkv(pi) by taking link correlation
into consideration.

Fig. 6. Example of paged collective ACKs.

The mechanism of paged collective ACKs reduces redundant
transmissions by considering link correlations. To clarify our
idea, we consider a simple network including four nodes as
shown in Fig. 6, where these nodes are within one-hop com-
munication range of each other and u is assumed as covered
while N1, N2, and N3 are uncovered. If N2 receives a trans-
mission from u, N2 can make sure that u is a covered node,
while N2 does not know the receiving status of N1 and N3

if link correlation has not been considered. However, if taking
link correlation into consideration, this transmission also acts
as collective ACKs to N2 for N1 and N3, given that N1 and
N3 have a reception probability Pru(N1|N2) and Pru(N3|N2),
respectively. It should be noted that a transmission from u is an
encoded packet as we employ network coding; thus, a collective
ACK to N2 can only implicitly ACK N1 and N3’s receiving of
this encoded packet but not native packets.

Based on the above network, we take a simple example to
demonstrate the benefit of paged collective ACKs compared
with collective ACKs in CF by decreasing the number of needed
ACKs. Suppose u has packets p1, p2, and p3 in its output queue
and N2’s estimations of the packets that N1 and N3 have are
p1, p3 and p2, p3, respectively, due to the diversity of packet
loss among links. Without considering inter-packet depen-
dance, CF needs u to keep broadcasting two packets p1 and
p2 as implicit ACKs until N2 makes sure CovN1

N2(2) = 1 and
CovN3

N2(1) = 1 based on the assumption Pru(N1|N2) = 100%
and Pru(N3|N2) = 100%. Each packet needs to be transmitted
twice due to l(u,N2) = 50%.

To address the problem described above, paged collective
ACKs in OppCode allows a node to terminate transmission ear-
lier if u chooses p1 ⊕ p2 to be transmitted. Suppose that N2

receives p1 ⊕ p2 after two transmissions, and then it can imme-
diately terminate its flooding mission due to CovN1

N2(2) and
CovN3

N2(1), both get 1 based on the assumption Pru(N1|N2) =
100% and Pru(N3|N2) = 100%. Therefore, the total number
of transmissions can be reduced to 2, while the number is 4
in CF.

C. Tradeoff Between Link Correlation and Network Coding

From the above analysis, we have the idea that network cod-
ing can reduce the total number of transmission in broadcast
when it has the opportunity to encode packets and link corre-
lation can do the same thing while employing collective ACKs.
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Fig. 7. Impact of link correlation on network coding. (a) Coding scenario.
(b) Noncoding scenario.

Fig. 8. FSM diagram of oppCode.

In OppCode, we combine network coding with link correlation,
aiming at achieving the highest energy conservation. We found
that there exists a tradeoff between link correlation and network
coding. To illustrate this tradeoff, let us consider two extreme
situations as follows. One is that a node u’s neighbors are all
negatively correlated (i.e., all the neighbors loss different pack-
ets), where network coding works best, as shown in Fig. 7(a),
in which nodes v1 and v2 lose packet p2 and p1, respectively.
The other is that u’s neighbors are all positively correlated (i.e.,
all the neighbors loss the same packets), where network coding
does not work, as shown in Fig. 7(b), in which nodes v1 and v2
all lose packet p1. Comparing these two scenarios, we can find
that there exist different coding opportunities with diverse link
correlation conditions.

When the links in WSNs are highly correlated, aggregate-
coding-gain-based mechanism is deserted and OppCode can
flexibly change to noncoding protocol. Otherwise, we can use
gain-based coding with correlated links. Link correlation has
an impact on coding decision-making, and can guide us switch-
ing between coding and noncoding protocols. In OppCode,
network coding is opportunistically decided based on link cor-
relation. When the average link correlation reaches a threshold,
we prefer not to code.

V. OPPCODE FLOODING PROTOCOL

This section describes the main design of OppCode proto-
col using a finite state machine (FSM), as shown in Fig. 8.
After initializing stage, each node running OppCode protocol
is in one of the following states: 1) maintenance; 2) sender; and
3) receiver state. Transitions between these states are triggered
by events.

After initializing, a node first enters the maintenance state.
Node in this state is responsible for updating link qualities

and link correlations among neighbors. A node transits from
maintenance state to sender state when its back-off timer fires.
The node first computes aggregate coding gain of each coding
option and then sends out an encoded packet with largest aggre-
gate coding gain. After that, it updates the per-packet coverage
probabilities of its neighbors and goes back to the maintenance
state. Whenever the node receives a packet, it enters the receiver
state and uses this packet as paged collective ACKs to update
its neighbors’ per-packet coverage probabilities in a batch, and
then similarly returns to the maintenance state. When the node
enters the maintenance state, it sets a back-off timer if the node
has uncovered neighbors. Otherwise, this procedure terminates
as the node estimates that all its neighbors have been covered.

A. Maintenance State

In maintenance state, every node periodically sends out a
hello message identified by the node ID and a packet sequence
number at an adaptive time interval T , which is decided by the
condition of wireless environment. The hello messages are not
only used for one-hop neighbor discovery but also for updat-
ing the link qualities and link correlations. The metric for link
quality, denoted as l(u, k), is defined as the ratio of the number
of received packets from sender u by k, to the total number of
packets sent by u, denoted as M .

The calculation of link correlation is more complex than that
of link quality. Link correlation is defined as the probability
that k receives a packet from sender u, given the condition that
another node v receives this packet, denoted as Pru(k|v). For
each receiver node, it keeps reception records of all hello mes-
sages from its neighbors, then we calculate link correlations as
follows:

Pru(k|v) =
∑M

i=1(Ruk(i)&Ruv(i))∑M
i=1 Ruv(i)

. (8)

Here, Rux(i) (x = v, k) is a bit representing x’s reception
status of the ith hello message sent from u. Rux(i) = 1 if x
receives this packet from u, otherwise, Rux(i) = 0.

B. Sender State

A node enters the sender state when its back-off timer fires.
A sender S should maintain three pieces of information.

1) Per-packet coverage probability Covku(i): Covku(i) (i =
1, . . . , |Page|; k ∈ N(u)) indicates k’s coverage proba-
bility by packet pi from u’s point of view.

2) Paged coverage probability Covku: Covku is defined as the
average coverage probability across a packet page, i.e.,

Covku =
1

|Page|
|Page|∑

i=1

Covku(i). (9)

3) Uncovered node set U(u): k is considered uncovered by

u when Covku is less than an application-specific thresh-
old α. Here, U(u) ⊆ N(u). Initially, u considers that all
neighbors are uncovered, i.e., U(u) = N(u).
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After a node enters the sender state, it first computes the
aggregate coding gain of each coding option according to (4) in
Section IV, and chooses the one with highest value to be used
for encoding and then send out the encoded packet. Then, it
updates its neighbors’ per-packet coverage probability Covku(i)
of packet i grounded on

Covk
u(i)← Covk

u(i) + l(u, k) · Prkdecode(Ω, i). (10)

Equation (10) is composed of two terms. The first term
denotes the probability that node k already has packet pi before
current transmission. The second one represents the contribu-
tion of current transmission, i.e., the probability that node k can
decode the native packet pi through current transmission from
u, where Prkdecode(Ω, i) stands for the probability that node k
can decode the packet pi if this transmission of coding option
Ω is received by k successfully.

Next, a more further step is to compute Prkdecode(Ω, i). The
calculation of Prkdecode(Ω, i) depends on k’s reception status
from u’s view, which has been described in Section IV-A2. For
example, suppose u needs to flood a page that contains p1, p2,
and p3, it has its neighbor k’s coverage probability Covku(i)
of packet pi (i = 1, 2, 3) in store. If encoded packet p1 ⊕ p2 is
assumed as the best option, u will update u’s per-page coverage
probabilities after it sends out this encoded packet as follows:

Covku(1)← Covku(1) + l(u, k) · (1− Covku(1)) · Covku(2)
Covku(2)← Covku(2) + l(u, k) · Covku(1) · (1− Covku(2))

Covku(3)← Covku(3). (11)

When Covku reaches a threshold α (α ≤ 1), k is considered
as covered by u and removed from U(u). If U(u) gets empty,
u terminates its flooding task. Otherwise, u returns to the main-
tenance state and then joins the forwarder competition again by
setting its back-off timer. α is an application-specific parame-
ter of OppCode. The higher the α is, the more reliable but less
time- and energy-effective the OppCode will be.

C. Receiver State

A node enters receiver state once it receives or overhears a
broadcasting encoded packet. For u, a rebroadcasting packet
received from v serves as three purposes. First, since only node
covered by a whole page can join the competition of rebroad-
casting, u makes sure that v must have all the packets in this
page and updates Covvu(i) using Covvu(i) = 1.

Second, u tries to decode the received encoded packet and
then updates its per-packet coverage probabilities Covuu(i)
based on the packets decoded. Covuu(i) is a binary variable
equal to 1 when u has decoded pi successfully or otherwise
equal to 0.

Finally, as the packet received also serves as paged collective
ACKs, u can update its neighbors’ coverage probabilities from
its own point of view using the following equation:

Covk
u(i)← Covk

u(i) + Prv(k|u) · Prkdecode(Ω, i). (12)

Here, Prv(k|u) is the probability that k can receive a packet
on the condition that node u has received the same packet. The

term of Prv(k|u) · Prkdecode(Ω, i) shows the probability that its
neighbor k can receive and decode the native packet pi from u’s
point of view.

As in sender state, when Covku reaches α, k is considered by
u as covered and removed from uncovered node set U(u) of
u. If U(u) is not empty and u is covered by all packets in the
specific page, u will join the competition for being next local
forwarder by setting back-off timer. Otherwise, u exits receiver
state and completes its rebroadcasting mission.

D. Back-Off Timer Design

The back-off timer is used to conduct dynamic forwarder
competition, whose duration is set according to many factors
such as uncovered neighborhood size and link qualities. In
OppCode, maximum gain (or MG) is defined as a metric for
setting the back-off timer.

Definition 1: Maximum gain: MG(u) equals the maximal
aggregate coding gain among all possible coding options for
a sender u, i.e., the maximal expected number of all decoded
native packets across the neighborhood if u transmits once.

Specifically, the value of MG(u) can be calculated using the
following equation:

MG(u) = MAXΩ(Gainu(Ω)). (13)

Intuitively, the higher the MG(u) value is, the more effective
the u’s forwarding is and the smaller its back-off timer period
should be. The rationale behind this is that we always select the
forwarder which is able to make more nodes in the network able
to decode native packets with one transmission.

Each node u updates its MG(u) dynamically during the dis-
semination of the packets as it updates the value of per-packet
Covku(i) whenever it sends or receives an encoded packet from
its neighbors.

E. Detailed Protocol

Combining all the design components, OppCode can be
described by the pseudocode shown in Algorithm 1. The algo-
rithm is simple and fully distributed that requires only one-hop
local information.

In OppCode, each node has an FSM with three states, i.e.,
maintenance, sender, and receiver states. State transitions are
triggered by the events of either sending timer firing (line 4) or
receiving a broadcast packet (line 11). Lines 5 to 10 handle the
event of sending timer firing. Lines 12 to 19 handle the event of
receiving a packet. Lines 20 to 22 update the uncovered set of
a node, and lines 23 to 26 determine whether the flooding task
should be terminated or not.

To sum up, the OppCode protocol has three key features.
1) It can be implemented with a simple three-state FSM, which
is resource-efficient and thus suitable for resource constrained
sensor nodes. 2) It deals with dynamic forwarder competition
with a metric of maximum gain MG(u) for each sender u.
3) It reduces the communication redundancy through paged col-
lective ACKs, eliminating costly per-packet ACKs from every
receiver.
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Algorithm 1. OppCode

1 Initially, U(u)← N(u); ∀ k ∈ U(u) and ∀ i from 1 to
|Page|, Covku(i)← 0;

2 While U(u) �= ∅ do
3 Switch Event do
4 case timer fired
5 u encodes and sends using option with

highest Gainu(Ω) via Equation. 1;
6 for k ∈ U(u) do
7 for i from 1 to |Page| do
8 Update Covku(i) via Equation. 2;
9 Call Update U(u);

10 Call Test U(u);
11 case u receives packet from v

12 for k ∈ U(u) do
13 if k==v then for i from 1 to |Page| do
14 Covku(i) = 1;
15 else
16 for i from 1 to |Page| do
17 Updates Covku(i) via

Equation 3;
18 Call Update U(u);
19 Call Test U(u);

20 Update U(u) function:

21 if Covku ≥ α then
22 U(u)← U(u)− k
23 Test U(u) function:
24 if U(u) �= ∅ then Set back-off timer via Equation 4;
25 else
26 Terminate the timer;

VI. SIMULATION

In order to better understand the performance of OppCode,
we compare its performance with the following three solutions
with extensive simulation results.

1) CF by Zhu et al. in NSDI’10.
2) OppCode with random coding decision (OppCode-R):

OppCode-R works similarly with OppCode except mak-
ing coding decision randomly from all possible coding
options.

3) Oracle: Oracle works similarly with OppCode, whose
only difference is that every node exactly knows which
part of packets its neighbors have. One can imagine that
there are cost-free ACKs that can be employed by nodes
to exchange its received packet list with their neighbors.

Four metrics are used to evaluate the protocols.
1) Reliability: Reliability is measured by the percentage of

nodes that received the whole flooding page in a network.
2) Transmission overhead: Transmission overhead is quan-

tified by the total number of transmissions by all nodes,
excluding hello messages in initialization period.

3 Flooding delay: Flooding delay is the time period from
the time that the source initiates the flooding to the time
when no more nodes rebroadcast.

4) Load balance: Load balance is a metric measuring the
uniformity of the rebroadcasting activities distribution
across the network, which is defined by the standard
deviation of the number of transmissions per node.

A. Simulation Setup

Our design is implemented based on the network simula-
tion tool OMNET-4.1. In our simulation experiments, a stan-
dard CSMA/CA protocol without ACKs and retransmissions is
adopted as the MAC layer. The radio model is implemented
based on our empirical data, which has obvious link-correlation
feature as described in Section III-A.

We use randomly generated network topologies to evaluate
our design. In the simulation, we randomly deploy 250 sensor
nodes in a 1000 m ×1000 m square field and the communica-
tion range is set within 155 m. A source node is positioned at
one corner of the field, which sends out a packet with 29-byte
payload every 5 s. The total simulation time is set to 1050 s.
The first 50 s is network initialization period, in which nodes
only exchanges hello messages between neighbors to establish
the neighborhood information. The source keeps sending out
200 data packets from 50 to 1050 s. Every data point stands
for the averaged value of results over 10 runs. Unless explicitly
declared, the above default values are used in our simulation
experiments.

B. Impact of Node Density

We first analyzes the effect of node density on the proto-
col performances by varying the number of nodes from 100 to
250 nodes. Fig. 9(a) shows that OppCode performs much bet-
ter compared with CF and OppCode-R and its performance is
very close to that of Oracle, although these protocols all have
high reliability more than 95% as the node density increases.
The reliability performances of all these protocols increase as
the network density increases. More nodes the network has,
more opportunities a node has to be connected with neighbors
and covered by flooding packets, and thus higher reliability
it can obtain. Besides, the mechanism of dynamic forwarder
selection contributes to achieve high reliability. While in tradi-
tional fixed-forwarder approaches, if these forwarders fail, the
uncovered nodes cannot be covered anymore.

Fig. 9(b) shows that the total number of transmissions of all
the protocols increases as the network gets denser. It can be
seen that total number of transmissions only increases slightly
in OppCode. The reason is that as the node density increases,
more neighbors help a node to be covered by predicting its
per-packet coverage probability, which results in a decrease
in per-node number of transmissions a node needs and only a
slight increase in total number of transmissions. It is not hard to
find that OppCode has much less total number of transmissions
compared with CF whatever the node density is. This is because
in OppCode, the technique of network coding is employed, each
time the node dynamically selects the best coding option for the
current transmission; thus, OppCode has much more efficient
rebroadcasts and less transmissions.

Fig. 9(c) shows that when the network density increases,
the end-to-end delay decreases in all these four protocols. The
reason is simple that the number of per-node retransmissions
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Fig. 9. Impact of node density. (a) Reliability. (b) Transmission overhead.
(c) Flooding delay. (d) Load balance.

used in these protocols decreases when the network density
increases. OppCode-R performs worst here due to the ineffi-
ciency of the random coding decision it employs.

Fig. 9(d) shows that when the network density increases,
the standard deviations of the number of transmissions per
node for all protocols decrease, because that denser the net-
work is, less nonuniformity of transmission number exists
among nodes. OppCode also performs better compared with
CF and OppCode-R, which achieves more even distribution of
transmissions across the network.

C. Impact of Unreliable links

In this experiment, we analyze the effects of varying link
qualities on protocol performances. The average link quality
varies from 60% to 100% for each experiment trial.

Fig. 10(a) shows that as the link quality increases, the relia-
bility increases for all the protocols. The reliability of OppCode
and OppCode-R is higher than 90% when the link quality
varies from 0.6 to 1, while CF has lower reliability less than
90% when the link quality is low. As a result, OppCode and
OppCode-R are better suitable for high-reliability applications
in WSNs with low link quality. Additionally, as shown in
Fig. 10(b), OppCode costs lower energy for data transmis-
sion, since OppCode employs network coding to further reduce
redundant transmission compared with CF. Compared with
OppCode-R that randomly chooses a coding option, OppCode
selects the best option for next transmission each time, which
results in the decrease in the number of transmissions.

Fig. 10(c) shows that the end-to-end delay decreases for all
protocols as the link quality increases. This is because bet-
ter the link quality is, fewer retransmissions needed by all the
protocols. Fig. 10(d) shows that as the link quality increases, the
standard deviation of the number of transmissions per node for
all protocols decreases, because that better the link quality is,
less nonuniformity of transmission number exists among nodes.

Fig. 10. Impact of unreliable links. (a) Reliability. (b) Transmission overhead.
(c) Flooding delay. (d) Load balance.

Fig. 11. Impact of reliability requirements. (a) Reliability. (b) Transmission
overhead. (c) Flooding delay. (d) Load balance.

D. Impact of Reliability Requirements

CF, OppCode, and OppCode-R all use a coverage threshold α
to control the reliability users need. We then analyze the impact
of α with the setup that the total number of nodes is 150, and
the α value varies from 0.1 to 0.9 with step 0.1.

Fig. 11(a) shows that the reliability of all the protocols
increases when the α value increases. We note that the relia-
bility of all the protocols is almost always above the line with
the angle of 45, indicating that these protocols all satisfy the
users’ requirement well.

Fig. 11(b) and (c) shows when the α value increases, the total
number of transmissions increases for all the protocols as well
as transmission delay. OppCode helps to reduce the number of
transmissions while generating lower delay, compared with CF
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Fig. 12. Impact of page size. (a) Reliability. (b) Transmission overhead.
(c) Flooding delay. (d) Load balance.

and OppCode-R. Fig. 11(d) shows as the α value increases, the
standard deviation of the number of transmissions per node for
all the protocols increases to some extent.

E. Impact of Page Size

Finally, we analyze the impact of page size on the perfor-
mance of four flooding protocols. The page size varies from 1
to 8 for OppCode, OppCode-R, and Oracle, while the number
of independent flooding packets varies from 1 to 8 for CF.

Fig. 12(a) shows that when the page size increases, OppCode
and OppCode-R achieve high reliability above 95%, while the
reliability of CF decreases to below 90% in some points. The
result indicates that CF is not suitable to be applied to high-
reliability multipacket flooding applications, while OppCode is
best suitable for this kind of flooding applications.

As shown in Fig. 12(b), the total number of transmis-
sions slightly increases in CF and OppCode when the page
size increases, while the number increases dramatically in
OppCode-R. The reason is that the increasing page size leads
to a huge size of the coding option set, and thus random
network coding causes huge amount of ineffective transmis-
sions. OppCode uses greedy coding decision instead of random
scheme, which is much more effective and helps to reduce the
number of transmission. Besides, OppCode combines network
coding with link correlation, which contributes to the decrease
in the number of transmissions compared with CF.

Fig. 12(c) and (d) shows that both OppCode and CF
have lower end-to-end delay and better load balance com-
pared with OppCode-R. With comprehensive analysis about
Fig. 12(a)–(d), we conclude that OppCode is the best achieving
energy- and time-efficiency compared with CF and OppCode-R
while having higher reliability and better load balance.

VII. IMPLEMENTATION AND EVALUATION

To evaluate the real-world performance of our design, we
compare the performance of OppCode with CF [10] and

Fig. 13. Indoor WSNs testbed.

standard flooding (FLD) protocol, in which each node rebroad-
casts its first-time received packet exactly once, using four
performance metrics: reliability, message overhead, flooding
delay, and load balance. All these protocols are implemented
based on TinyOS 2.1.0. AMSenderC and AMReceiverC are
the main communication-related TinyOS components used and
FTSP is adopted as the time-synchronization protocol.

A. Experimental Setup

The experiments are conducted on an indoor 2.5 m × 6.0 m
testbed consisted of 21 TelosB nodes, as shown in Fig. 13. In
the experiments, the transmission power of each node is tuned
down to level 2 to ensure that multihop network topology can
be formed. Without loss of generality, the page size for each
node is fixed as four. To reduce the influence of randomness in
experiments, each result is obtained averaged over 15 runs.

In a 50-s network initialization phase, all nodes get synchro-
nized and then start the neighbor discovery by exchanging hello
messages. After that, all the nodes have obtained the link quality
and link correlation information about their one-hop neighbors.
Then, a node is selected as the sender to send out 100 data
packets with a time interval of 10 s. For performance analysis
purposes, in each data packet, we include information such as
hop count, time stamp, and the previous hops node ID. Unless
explicitly declared, the above default values are used in all the
experiments.

B. Experimental Performance

We analyze the average performance of these three flooding
protocols and the impact of varying reliability threshold α on
their performance of protocols as shown in Figs. 14 and 15.

Fig. 14(a) shows that the average reliability of FLD, CF, and
OppCode is 53.5%, 99.65%, and 99.6%, respectively. OppCode
and CF reach high reliability more than 99%, much higher
than FLD. Furthermore, OppCode has fewer transmissions and
shorter delay than CF does as shown in Fig. 14(b) and (c).
The average values of the total number of transmissions and
flooding delay in seconds for FLD, CF, and OppCode are 42.8,
56.88, 50.32 and 1.82, 1.63, 1.5, respectively. Thus, OppCode
almost reduces the total number of transmissions and flooding
delay by 11.53% and 7.98%, respectively, while achieving the
same reliability compared with CF. These improvements are
due to opportunistic coding that allows for a more efficient use
of the wireless media. Especially, OppCode works best when
the links are perfectly negative correlated, i.e., different links
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Fig. 14. Performance of protocols in indoor experiments. (a) Reliability.
(b) Transmission overhead. (c) Flooding delay. (d) Load balance.

Fig. 15. Impact of reliability threshold in indoor experiments. (a) Reliability.
(b) Transmission overhead. (c) Flooding delay. (d) Load balance.

lost different packets, reducing the number of transmissions
by sending encoded packets. In other words, if the links are
perfectly positive correlated, i.e., different links lost the same
packets, the total number of transmissions would be the same
with or without network coding.

Fig. 15(a)–(c) shows the reliability, message overhead, and
flooding delay of FLD, CF, and OppCode as the reliability
threshold α various from 0.5 to 0.9. In Fig. 15(b) and (c), both
the total number of transmissions and flooding delay in CF and
OppCode increase as the reliability threshold α increases, while
OppCode always has fewer transmissions and shorter delay
compared with CF, which shows that OppCode is more suitable
for multipacket flooding in energy-sensitive or time-sensitive
applications.

Figs. 14(d) and 15(d) show the performance of load balance
of FLD, CF, and OppCode. While the threshold α varies from
0.5 to 0.9, OppCode has a slightly higher value of standard devi-
ation than CF before threshold 0.63, while it has lower value
after threshold 0.63. Thus, OppCode is more suitable when
applied to flooding applications requiring high reliability.

C. Island-Node Observation

While conducting real-world experiment, we observe an
island-node phenomena and propose a practical method to
reduce unnecessary transmissions and additional energy con-
sumption induced by them.

Island-node observation: In flooding, a node with very low
link qualities in a network keeps generating useless rebroad-
casts, which contributes very little to its neighbors’ coverage.

We consider a node exhibiting this observation as an island-
node. An island-node keeps generating large amount of
unnecessary disseminations with little contribution to the cov-
erage of its neighbors. This is because of two reasons.

1) Each transmission of an island-node has a very low
increase of its estimation of its neighbors’ coverage prob-
ability due to its low link qualities to the neighbors.

2) An island-node may not receive its neighbors’ rebroad-
casts as paged collective ACKs to update its estimation of
its neighbors’ coverage probability.

In order to make its neighbors covered in its own point
of view, it will keep retransmitting packets until the paged
coverage of each neighbor gets higher than the threshold α.

In the implementation of OppCode, to address the island-
node problem, we set a limit on the number of retransmissions
for each node avoiding that few island-nodes lead to high num-
ber of rebroadcasts and long end-to-end flooding delay of the
whole network. The experimental results show that this solu-
tion with a retransmission limit works well, which significantly
reduces the number of useless transmission by island-nodes,
while high reliability still can be achieved.

VIII. CONCLUSION

In this paper, we present the design of a network-coding-
based multipacket flooding protocol OppCode that provides
efficient and reliable message dissemination service for WSNs
with unreliable and correlated links. We demonstrate that
OppCode is effective through two key mechanisms: opportunis-
tic coding decision and paged collective ACKs. We evaluated
its performance based on both simulations and real-world
experiments compared with that of state-of-the-art protocols.
Experimental results show that OppCode has high reliability,
low transmission overhead, low delay, and good load balance.
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