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Recent works have designed systems containing tiny devices to communicate with harvested ambient en-
ergy, such as the ambient backscatter and renewable sensor networks. These systems often encounter the
heterogeneity and randomness of ambient energy. Meanwhile, the energy storage unit, such as the battery
or capacitor, has the inherent property of imperfect charge efficiency λ (λ ≤ 1), which is usually low when
the power of the ambient energy is weak or variable. These features bring new challenges in using the har-
vested energy efficiently. This article calls it the stochastic duty cycling problem and studies it under three
cases—offline, online, and correlated stochastic duty cycling—to maximize utilization efficiency. We design
an offline algorithm1 for the offline case with optimal performance. An approximation algorithm with the
ratio 1 − e−γ is designed for the online case. By adding initial negotiation among devices, we present a cor-
related algorithm and prove its approximation ratio theoretically. Experiment evaluation on our real energy
harvesting platform shows that the offline algorithm performs over the other two algorithms. The correlated
algorithm may not perform over the online one under the impacts of the three metrics: heterogeneity, charge
efficiency, and energy harvesting probability.
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1 INTRODUCTION

Energy harvesting and communication for tiny devices have been hot topics in recent years [Chen
et al. 2017; Karaaslan et al. 2017; Liu et al. 2018; Zheng et al. 2019]. A wide range of devices, such
as ambient backscatter [Darsena et al. 2017], ring [Karaaslan et al. 2017], and renewable sensor
node [Chen et al. 2017, 2018; Shen et al. 2013], have been developed to harvest diverse ambient
energy, such as TV signals [Darsena et al. 2017], Near Field Communication (NFC) signals from
phones [Boada et al. 2018], and renewable energy [Chen et al. 2017]. With these tiny devices,
the power of harvested energy is usually weak and limited [Shen et al. 2013]. To support long-
term system operation with it, the duty cycle adjustment is an indispensable technique to allocate
energy efficiently [Chen et al. 2017]. Furthermore, it varies with time and is heterogeneous among
devices. A few works suggest the dynamic duty cycling according to its randomness [Tong and
Pan 2017].

However, a few works consider the impacts of the imperfect charge efficiency and the het-
erogeneity of the ambient energy when adjusting the duty cycle in energy harvesting wireless
systems. For example, the charge efficiency of the rechargeable battery for a solar-powered sensor
node is often less than 75% [Ding et al. 2000], whereas the capacitor suffers from high leakage [Zhu
et al. 2009]. The imperfect charge efficiency results in infrastructure energy consumption to store
harvested energy inevitably. The ambient energy is heterogeneous (i.e., nonuniform over time and
different among the devices). The previous works on dynamic duty cycling exhibit their limitation
on the utilization efficiency of harvested energy since they consider only the randomness rather
than the heterogeneity of harvested energy among devices and the imperfect charge efficiency.
For example, if two neighboring devices u and v can wake up and harvest energy simultaneously,
they need not store its harvested energy and thus waste energy on the imperfect charge efficiency.
It thus requires a new technique to not only adjust the duty cycle but also determine the moments
to wake up by considering the imperfect charge efficiency caused by randomness, heterogeneity
of the harvested energy, and the limited and weak power. This article presents the new technique
using the term stochastic duty cycling.

To improve the utilization efficiency of the harvested energy, this work proposes the stochastic
duty cycling algorithms for three cases—offline, online, and correlation—by considering the im-
perfect charge efficiency that caused by randomness, heterogeneity of the harvested energy, and
the limited and weak power. Under the offline case, the profile of harvested energy in each period
is assumed to be known in advance. This assumption can be realistic when the profile in one pe-
riod is the same as or quite similar to that in the previous periods. The offline algorithm serves
as the benchmark to compare to the online and correlated cases. Under the online case, each de-
vice operates its duty cycling independently so as to save energy on message negotiation among
nodes. Under the correlated case, each device can communicate its strategy with its neighbor at
the beginning of each period, then adjusts its duty cycle independently. The goal of our study for
the three cases is to maximize the utilization efficiency of the harvested energy, which is mea-
sured by the metric Common Active Time (CAT) in each period. Suppose that two devices u and
v are scheduled to be active respectively in time sets su and sv . The CAT between u and v is then
the intersection su ∩ sv of the two sets. The main contributions of this work are summarized as
follows:

(1) This article proposes the new problem of how the charge efficiency caused by the ran-
domness, heterogeneity of the harvested energy, and the limited and weak power affects
its utilization efficiency under duty cycling.

(2) We design the offline algorithm for the offline case, which is proved to be optimal. The
online algorithm is designed for the online case with the approximation ratio 1 − e−γ . For
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the correlated case, we propose the correlated algorithm and give its approximation ratio
in different cases.

(3) The experiment is conducted based on our real energy harvesting platform to evaluate the
performance of the offline, online, and correlated algorithms. We extract three metrics—
heterogeneity, charge efficiency, and energy harvesting probability (randomness)—from
the experiment data to dissect their impacts on the three algorithms. Our analysis shows
that the online and correlated algorithms have their own advantages under the three
metrics.

Road map. The rest of this article is organized as follows. Section 2 reviews the related work
on the energy harvesting systems and duty cycling techniques. Section 3 describes the motivation
of this work. The model and the stochastic duty cycling problem are formulated in Section 4. We
design the optimal solution for the offline case in Section 5 and the online and correlated algorithms
in Sections 6 and 7, respectively. The experiment evaluation based on our real energy harvesting
platform is conducted in Section 8. Section 9 concludes the article.

2 RELATED WORK

In recent years, many works have been devoted to energy harvesting and its management and
applications [Darsena et al. 2017; Mehrabi and Kim 2016; Wang et al. 2013; Yang et al. 2015; Zhang
et al. 2015, 2016]. This section reviews the related work on the energy harvesting system and the
duty cycling technique.

Energy harvesting system. Tiny energy harvesting devices have been widely researched in recent
years. Darsena et al. [2017] give a modeling and performance analysis about the ambient backscat-
ter devices, which can communicate by backscattering ambient RF with the energy harvested from
TV signals. Li et al. [2018] design a self-sustaining sensing system called Trinity. It harvests en-
ergy from the airflow produced by HVAC outlets to power the sensor nodes, which are then able
to communicate with each other. Gummeson et al. [2014] design a ring form-factor wearable de-
vice for gesture input to harvest energy from an NFC-enabled phone held in a user’s hand. Other
typical systems are able to harvest solar, vibration, and wind energy [Bito et al. 2017; Habibzadeh
et al. 2017]. Among the existing systems, some devices have no storage components and thus use
the harvested energy directly [Huang and Neely 2013]. Some devices store the harvested energy in
their batteries, whereas others take the capacitor as the primary buffer and the battery as the sec-
ond buffer [Jiang et al. 2005]. The battery suffers from low charge efficiency and long charging du-
ration, and the capacitor has high leakage. For example, the 2000F ultra-capacitor has a high leak-
age rate up to 43.8% during the first month [Zhu et al. 2009]. Although there are some works on the
scheduling of energy networks, such as smart grid, their methods cannot be applied to ours directly.

These devices and systems can harvest a small amount of energy from the natural resources
continually, which is not enough to support the full duty cycle. The harvested energy among
devices or the systems is heterogeneous because of the spatio-temporal variation of the natural
resources [Chang et al. 2017; Heesen and Madlener 2018]. Frequent charging/discharging suffers
from much energy loss and harms the battery working life.

Duty cycling. In energy harvesting systems, the duty cycling technique remains necessary be-
cause of the limited hardware and insufficient intensity of the natural resources [Chen et al. 2017;
Tong and Pan 2017]. Previous works on duty cycling can be classified into two groups: determin-
istic and stochastic duty cycling. The former one calculates the amount of active time in each
period, such as the adaptive duty cycling [Tong and Pan 2017]. A few works consider not only
the amount of active time but also the moments to wake up (i.e., stochastic duty cycling) [Ghidini
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Fig. 1. The energy harvested by different three devices in 3 days.

and Das 2011]. However, they do not consider that energy harvesting is a random process, and
the energy profile of each sensor node is time varying and different among the devices [Zhu et al.
2009]. Furthermore, these previous works adjust the duty cycle only according to the predicted
amount of harvested energy in a duration, and they do not consider the moments to be active
since the low charge efficiency has a great impact on energy efficiency. Different from previous
works, this work addresses stochastic duty cycling by determining not only the amount of active
time but also the moments to be active over a period. We consider the imperfect charge efficiency
caused by the phenomena about strong randomness, heterogeneous energy availability, and the
weak and limited power of harvested energy, which has not yet been studied.

3 MOTIVATION

This section presents the analysis for the data collected with our energy harvesting platform, Solar-
Mote [Zhang et al. 2015]. Its technical details will be presented in Section 8.1. Some phenomena are
then observed from the data, including the strong randomness, heterogeneous energy availability,
and the weak and limited power of harvested energy. They result in the low charge efficiency.

3.1 Randomness and Heterogeneous Energy Availability

The randomness and heterogeneity of harvested energy appear quite often when the platform is
deployed outdoors [Chang et al. 2017; Heesen and Madlener 2018]. For example, solar energy can
be harvested during the day and needs to be stored partially to support operation during the night.
Unpredictable environmental factors, such as the shadowing of a tree, building, or cloud, lead to
diverse availability profiles of the harvested energy as illustrated in Figure 1(a) and (b). One device
may have different energy availability profiles over different periods even under similar weather
conditions as illustrated in Figure 1(c) and (d). This observation is defined as the randomness
of harvested energy, which has been modeled in previous models as either an i.i.d. [Huang and
Neely 2013] or Markov process [He et al. 2012]. Furthermore, as shown in Figure 1(a) and (b), the
energy profiles for different devices vary significantly over the same period. Therefore, different
devices may have diverse chances to harvest energy because of shadowing. This observation is
defined as the heterogeneity among devices. A device wastes energy if it cannot wake up with its
neighbor simultaneously.

3.2 Power Limitation and Weakness

The stored power is limited and weak because of the randomness and heterogeneity of harvested
energy availability under unstable and weak ambient light conditions [Shen et al. 2013]. The volt-
age to support the normal operation of a tiny device, such as SolarMote, is usually about 3 V. In a
good solar condition, the time to harvest energy is about 7 hours as shown in Figure 1(a) and (b).
It can be much worse, however, as shown in the second and third devices of harvested energy.
Thus, harvested energy is limited to support device operation for a full day. The power of har-
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vested energy is weak because its voltage is about 4 V or less as shown in Figure 1(c) and (d).
The voltage value of harvested solar power has significant variation in different periods between
different devices. Sometimes the voltage of harvested solar power is quite weak. The voltage value
is between [0, 1]V for most of the day as shown in Figure 1(a) and (c). Especially in Figure 1(a),
the voltage value of harvested energy of the third device is close to 0. The weakness of harvested
energy makes the amount of it limited even further.

3.3 Low Charge Efficiency

Charge efficiency can be very low because of hardware limitations or the power weakness and ran-
domness of harvested energy. The most popular energy storage units in tiny energy harvesting
devices are the battery and capacitor. The charge efficiency of a rechargeable battery for a solar-
powered sensor node is often less than 75% [Ding et al. 2000], whereas the capacitor suffers from
high leakage. The randomness of harvested energy decreases the chance to charge the battery
because of its lower power, which needs a node to switch frequently between storing the har-
vested energy and using battery energy. The weak harvested energy results in even worse charge
efficiency.

Notice that devices can communicate with each other only when they are active simultaneously.
Based on the preceding observations, it is beneficial for utilization efficiency of harvested energy
to use it directly rather than store it first under the low charge efficiency. However, the randomness
of energy availability often prevents the devices from using harvested energy directly. The het-
erogeneity prevents devices from making decisions with the statistics of historical information.
Such difficulties make it quite challenging to plan active time slots for devices. These observa-
tions motivate us to design new duty cycling algorithms to improve the utilization efficiency of
harvested energy by considering factors including randomness, heterogeneity of the energy avail-
ability, weak and limited power, and imperfect charge efficiency.

4 PRELIMINARIES

This section provides the energy harvesting and system models, presents the study objective, and
then formulates the stochastic duty cycling problem.

4.1 Model

In the energy harvesting system, each device can harvest ambient energy to communicate with its
neighbor. It can store its harvested energy with charge efficiency λ or use it directly. To improve
energy harvesting efficiency, most energy harvesting systems fix a switch among the ambient
power source, the reservoir capacitor, and the battery instead of connecting the former one directly
to either of the latter two [Shen et al. 2009]. Thus, by controlling the switch, each device can wake
up by using the stored or harvested energy to support its normal communications. Each device can
choose any one of two resources—stored or harvested energy—to support its normal operation by
controlling the switch. This article focuses on the usual case that the power of the ambient energy
cannot support simultaneous operation of communication and battery charging—for instance, the
harvested consumption power is not higher than the energy consumption power ρ. In each period,
each device can harvest energy with probabilityγ . The chance to harvest energy could be arbitrary
and nonuniform.

LetT denote the period and θu denote the energy availability state of u, where θu (τ ) = 1, τ ∈ T ,
if u can access energy sources with sufficient intensity at time slot τ , and θu (τ ) = 0 otherwise.
Assume that each device can harvest one unit of energy at each time slot τ (τ ∈ T ) with probability
γ . The harvested energy is relatively weak, and thus we can set ρ ≥ 1. Letαu (τ ) denote the decision
of device u at time slot τ . If u is active, αu (τ ) = 1 and 0 otherwise. Let ru (τ ) denote u’s residual
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stored energy until the end of slot τ . Combining with the harvested energy and previous decisions,
we can calculate ru (τ ) by the following equation:

ru (τ ) =
τ∑

t=1

{λθu (τ )[1 − αu (τ )] − βu (τ )[1 − θu (τ )]αu (τ )}. (1)

When θu (τ ) = 1 and αu (τ ) = 0, device u can remain asleep and store λ units of energy. When
θu (τ ) = 1 and αu (τ ) = 0, device u has to consume its residual stored energy to wake up and keep
active in time slot τ . The consumed energy of the devices u andv at time slot τ is denoted by β (τ ).
β (τ ) is given by the following equation:

β (τ ) =
⎧⎪⎪⎨⎪⎪⎩

0, i f α (τ ) = 0,
1, i f α (τ ) · θ (τ ) = 1,
min{1, ru (τ − 1)}, otherwise .

(2)

Device u will not consume energy if it decides to remain asleep in time slot τ . It will consume one
unit of harvested energy if it decides to wake up and the ambient energy is available. However,
if it decides to wake up and ambient energy is not available, it will consume the residual stored
energy. Notice that this work considers the point-to-point (P2P) communication model (i.e., one
device communicates with the other). Thus, we can assume that a pair of neighboring devices can
have the same energy consumption power: ρu = ρv . Let ρ = ρu = ρv (ρ ≥ 1). The P2P model is
very useful in wide applications, such as communication in the ambient backscatter [Darsena et al.
2017] and the neighboring nodes of sensor networks [Zhang et al. 2016]. For other models, such as
tree-like topology and the energy consumption model, we provide some discussion in Section 9.

4.2 Objective

Suppose that a period T is divided into some equal time slots τ = 1, 2, . . . , |T |. Denote the set of
device u’s active time slots by su , where su ∈ T . The duty cycle is the ratio of active time to the
period length, such as |su |/|T |. The technique of duty cycle adjustment in a previous work [Chen
et al. 2017] is to adjust the ratio. To differ from the duty cycle adjustment, this work introduces
the concept of duty cycling, which finds a set of active time slots, such as su , in the given period
for each device so as to improve energy efficiency. This section thus defines the metric, CAT, as
follows:

Definition 1 (Common Active Time). Given the neighboring devices u and v , and their sets su

and sv of active time slots in period T , their CAT I (T ) in the period T is the cardinality of the
intersection su ∩ sv of two sets.

The CAT is determined by the energy availability state and the decision of each device. The CAT
between u and its neighbor v is calculated as follows. When θu (τ ) · θv (τ ) = 1, named condition

one (c1), and αu (τ ) · αv (τ ) = 1, named condition two (c2), the CAT is set to be 1/ρ (i.e., I (τ ) = 1/ρ).
When αu (τ ) · αv (τ ) = 0, named condition three (c3), the CAT is set to be 0. When θu (τ ) · θv (τ ) = 0,
named condition four (c4), and αu (τ ) · αv (τ ) = 1, at least one of devices u and v has to use the
residual energy. Thus, I (τ ) = min{1, rv (τ )/ρ, ru (τ )/ρ}, where rv (τ ) ≥ 0 and ru (τ ) ≥ 0. Therefore,
the CAT at each time slot τ is given by the following equation:

I (τ ) =
⎧⎪⎪⎨⎪⎪⎩

1/ρ, i f c1&c2,
0, i f c3,
min{1, rv (τ )/ρ, ru (τ )/ρ}, i f c2&c4,

(3)

where c1, c2, c3, and c4 are four conditions given in the previous content. Each device must deter-
mine a sequence of decisionsα (τ ) (∀τ ∈ T ) so that the expected overall CATE(I (T )) = ΣT

τ=1E(I (τ ))

ACM Transactions on Sensor Networks, Vol. 16, No. 2, Article 15. Publication date: January 2020.



Wireless Systems under Energy Harvesting Heterogeneity 15:7

Table 1. Symbol and Meaning

Symbol Description Symbol Description Symbol Description

T Period τ Slot u,v Devices

r Stored energy U ,V Vertex sets E Expectation

E Edge set G Graph λ Charge efficiency

I CAT θ Energy state C Synchronous edge set

α Device decision p Probability D Asynchronous edge set

c Condition n No. of balls A Bin subset

β Power ρ Consumed energy in one slot S No. of nonempty bins

m No. of bins s Active slot set

k, l Index γ Energy harvesting probability

inT can be maximized. In a periodT , each node needs to make a sequence of decisions to sleep or to
be active with its random and heterogeneous harvested energy while the charge efficiency λ < 1.
The objective of this work is to maximize the overall CAT in each periodT . With Equation (3), the
stochastic duty cycling problem can be formulated as the following optimization problem:

max E(I (T )), (4)

s.t. β (τ ) ≤ θ (τ − 1) + [1 − θ (τ )]r (τ ), ∀τ ∈ T ;u,v, (5)

θ (τ ) ∈ {0, 1} ∀τ ∈ T , (6)

where the first constraint in Equation (5) indicates that the amount of consumed energy should less
than the harvested energy when the ambient energy is available or less than the residual stored
energy when it is not available. Since we can define the new slot and period as τ/ρ and T /ρ, the
following context omits the scale ρ for the succinct presentation. Most symbols used in this article
are summarized in Table 1.

4.3 Energy State Graph

This work develops the energy state graph, denoted by G (U ,V ,E), to describe the states θu (τ )
and θv (τ ), ∀τ = 1, . . . ,T , of the ambient energy available to device u and its neighbor v , and all
feasible decisions αu (τ ) and αv (τ ), ∀τ = 1, . . . ,T . In the energy state graph, the time slot at which
a device can harvest energy is called a vertex.U andV represent the vertex sets of devices u andv,
respectively. E represents the set of edges among the vertices respectively from the sets U and V ,
whose construction will be described in the next section. The graph characterizes the timing and
interaction relations between the states of harvested energy of neighboring devices and thus is a
bipartite graph.

Let the red circle in Figure 2 denote the vertex. For example, the red vertex τ1 (u) indicates that
u can harvest ambient energy at time slot τ1 (i.e., θu (τ1) = 1). Each device can consume harvested
energy directly or store it. Correspondingly, each vertex of device u may connect to any vertex
of its neighbor v as shown in Figure 2. If two vertices come from two vertex sets, respectively,
such as τ1 (u) ∈ U and τ1 (v ) ∈ V in Figure 2, and appear at the same time slot, they are called
synchronous vertices. Otherwise, they are called asynchronous vertices—that is, at least one device
uses the stored energy to establish a link with the neighboring device. If devices u andv are active
at the time slot of synchronous vertices, the edge connecting the synchronous vertices is called
a synchronous edge. Otherwise, it is called an asynchronous edge, which indicates that an earlier
vertex should wait for a latter one. Therefore, devices v and u could wake up at the same slot.
For example, the asynchronous edge (τ4 (v ),τ5 (u)) indicates that v harvests the energy (i.e., the
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Fig. 2. Energy state graph G (U ,V ,E). u and v are neighboring devices.

vertex τ4 (v )) at slot τ4 and wakes up by consuming it at τ5. At the same time slot τ5, u wakes up
by consuming the directly harvested energy (i.e., τ5 (u)). If one device does not wake up at any
time slot, no edge is established. Figure 2 shows all possible edges. The properties analyzed in the
following context illustrate that some edges are not feasible.

In the case of synchronous edge, the harvested energy is directly consumed, so no energy is
wasted. However, some energy is wasted in the case of an asynchronous edge because of low
charge efficiency. By recalling the assumption in Section 4.1, each device can harvest one unit of
energy at each single time slot. The CAT of each synchronous edge is 1, so we assign it with weight
1. Similarly, each asynchronous edge is assigned weight λ. The example in Figure 2 illustrates these
weight properties. The synchronous edges (τ1 (u),τ1 (v )) are assigned weight 1. The asynchronous
edges, (τ1 (u),τ4 (v )), (τ5 (u),τ1 (v )), and (τ5 (u),τ4 (v )), and so on, are assigned weight λ. We have
the following property.

Property 1. All synchronous edges have the same weight: 1. All asynchronous edges have the same

weight: λ.

Notice that the energy harvested in one time slot can support the device’s communication for
at most one slot. Accordingly, each vertex can connect one feasible edge at most. We have the
following property.

Property 2. A feasible duty cycling schedule can choose at most one edge incident to each vertex.

Thus, the edges (τ5 (u),τ1 (v )) and (τ5 (u),τ4 (v )) cannot exist simultaneously in the example of
Figure 2 according to Property 2. Recall that each device can harvest energy at each time slot with
probability γ . Accordingly, the probability that device u has a synchronous or an asynchronous
edge with device v is γ at each time slot as well, since each vertex of device u needs to connect
with one of devicev . The probability that there is a synchronous edge between a pair of devices at
each time slot is γ 2. Thus, the probability that each device has an asynchronous edge at each time
slot is γ − γ 2. We therefore have the following property.

Property 3. The probabilities to have synchronous and asynchronous edges at each time slot re-

spectively are γ 2 and γ (1 − γ ) between a pair of neighboring devices.

5 OFFLINE STOCHASTIC DUTY CYCLING

Under the offline case, each device has complete knowledge of the harvested energy of its own
and its neighbor. The expected numbers of synchronous and asynchronous edges in Property 3
can be known in advance. First, we construct an energy state graph for each device. The overall
CAT is the sum of a subset of edges of the energy state graph, which is selected by a duty cycling
algorithm. The optimal algorithm is to find such a subset of edges so that the overall weight of
the edges is maximized. In the energy state graph in Figure 2, each vertex in U may connect with
any vertex inV and vice versa. Each edge can be taken as a matching between two vertices that it
connects with. Thus, we have the following claim.
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Fig. 3. Offline duty cycling graph G (U ,V ,Ef ).

Claim 1. The optimal algorithm for the offline duty cycling problem is equivalent to finding the

maximum weighted bipartite matching between two sets U and V in the energy state graph.

Since there are two kinds of weights—1 and λ—it is easy to find the maximum weighted bipartite
matching in the energy state graph with Properties 1 and 2. The example in Figure 3 illustrates
the way to find the maximum weighted matching between the sets U and V , which leads to a
new graph, named the offline duty cycling graph. Recall Property 2 in which each vertex can only
connect with one edge, so we can construct the offline duty cycling graph by two steps. In the first
step, all synchronous edges are selected because the synchronous edge has higher weight than
the asynchronous one according to Property 1. The selection of the synchronous edges, such as
(τ1 (u),τ1 (v )) and (τ6 (u),τ6 (v )) in Figure 3, corresponds to the decision making, αu (τ1) = αv (τ1) =
1 and αu (τ6) = αv (τ6) = 1. In the second step, the asynchronous edges are chosen. The vertex
τ3 (v ) searches one vertex inU to add an asynchronous edge. τ3 (v ) can only search the vertices in
U , which appears later than τ3 (v ), since the device can use the energy only after it is harvested
and stored. According to Property 1, τ3 (v ) can select the vertex τ4 (u) so the asynchronous edge
(τ4 (u),τ3 (v )) is established—that is, making decisions αv (τ3) = 0, αu (τ4) = αv (τ4) = 1. For each
asynchronous edge (τk (u),τl (v )), its selection means that u and v make the decisions to be active
at τk if l < k by Rule 1. The offline algorithm is summarized in Algorithm 1.

Rule 1. For each asynchronous edge (τk (u),τl (v )), u sleeps and stores its harvested energy at slot

τk and then wakes up at τl if k < l . Otherwise, it wakes up at τk .

We show that the offline algorithm given in Algorithm 1 is optimal by Theorem 1.

Theorem 1 (Optimality). The edge set Ef of the offline duty cycling graph is the maximum

weighted bipartite matching between the two sets U and V .

ALGORITHM 1: Offline Duty Cycling Algorithm

Input: The harvested energy states of devices u and v : U and V ;
Output: The decision sequence α (τ ), τ ∈ T , for each device, and the edge set Ef .

1: Construct the energy state graph G (U ,V ,E) based on U and V ;
2: Find all synchronous edges in E and add them into Ef ;
3: Remove all edges linked to the synchronous vertices from E;
4: while E � ∅ do

5: Select an arbitrary edge (τ (u),τ (v )) from E and add it into Ef ;
6: Remove all edges linked to the vertices τ (u) and τ (v );
7: end while

8: At each time slot τ , τ ∈ T , corresponding to synchronous edge, let α (τ ) = 1 for both the devices u and v ;
9: At all time slots corresponding to an asynchronous edge, each device makes a decision according to

Rule 1. If a sleeping decision is made, α (τ ) = 0 and 1 otherwise.
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Proof. We prove the theorem by contradiction. Assume that the optimal algorithm leads to
the maximum weighted matching, denoted by Ep . The overall weight of all edges in Ep must be
no less than that in Ef , where Ef is obtained by Algorithm 1. Since each edge has two kinds of

weights—1 and λ—we divide the edge set into two subsets: E1 with weight 1 and Eλ with weight
λ. Accordingly, Ef = E1

f
∪ Eλ

f
and Ep = E1

p ∪ Eλ
p . According to the assumption, we must have

|E1
p | > |E1

f
| or |Eλ

p | > |Eλ
f
|, where | · | is the set cardinality. For the case |E1

p | > |E1
f
|, there is at least

one another synchronous edge, which is not included in E1
f
. But it contradicts Algorithm 1 since

the algorithm searches all synchronous edges and adds them into Ef first in Step 2. Therefore, we

have |E1
p | = |E1

f
|. For the case |Eλ

p | > |Eλ
f
|, Ep must contain more edges than Ef . Let (τ (u),τ (v ))

denote an arbitrary edge that is in Ep but not in Ef . The edge (τ (u),τ (v )) must also be in the
set E. If (τ (u),τ (v )) is selected by Step 5 of Algorithm 1, it is in Ef . It leads to contradiction. If
(τ (u),τ (v )) is not selected by Step 5 of Algorithm 1, the vertex (τ (u) or τ (v )) must connect to
another vertex, such as τ (v ))′ or (τ (u)′. It creates a new edge in Ef , which leads to contradiction.

Therefore, we can prove the case |Eλ
p | = |Eλ

f
|, and the offline algorithm is optimal. �

Although the energy is harvested with probability, the energy state of each device is assumed
to be known in advance in the offline case. According to Property 3, the maximal CAT is given by
the following theorem.

Theorem 2 (Maximal CAT). The expected maximal CAT over the period T by Algorithm 1 is

|T |γ [γ + λ(1 − γ )] per device.

Proof. By recalling the assumption in Section 4.1, each device can harvest energy in each time
slot with the charge efficiency γ . The expected number of synchronous edges over the period is∑T

τi=1 γ
2. The expected number of asynchronous edges over the period is

∑T
τi=1 γ (1 − γ ). Thus, the

expected overall CAT is E(I (T )) = |T |γ [γ + λ(1 − γ )]. �

There are some existing algorithms to find the maximum weighted bipartite matching [Madry
2013]. Their complexity is quite high. In this work, the time complexity of Algorithm 1 is not
as high as in previous works. In Step 1 of Algorithm 1, each device costs |T | steps to identify
the harvested energy state of each time slot. In Step 2, it takes at most max{|U |, |V |} steps to
establish synchronous edges among the vertices. From Step 4 to Step 7, it takes at most |U | |V |
steps to establish asynchronous edges among the vertices. Therefore, the overall time complexity
is max{|T |, |U | |V |}.

Theorem 3 (Time complexity). The time complexity of Algorithm 1 is O (max{|T |, |U | |V |}}).

6 ONLINE STOCHASTIC DUTY CYCLING

This section describes the online stochastic duty cycling problem, and presents the online algo-
rithm and its theoretical performance.

6.1 Problem Description

Under the online case, each device and its neighbor have no future information of the profiles of
their harvested energy in advance. Accordingly, the vertices in both setsU and V arrive online in
the energy state graph. Before the arrival of each vertex, each device must independently make
an online decision to be active or sleep beforehand. The challenging points are tripartite: (1) each
device does not know the future energy state of its own and its neighbor beforehand, (2) each
device must make decision independently according to its own energy harvesting probability, and
(3) it is not accurate to make a decision with the historical information because of the heterogeneity
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Fig. 4. Online duty cycling graph G (U ,V ,Eo ). Current time slot is τ8.

of the harvested energy. The online duty cycling graph in Figure 4 illustrates an example to show
the challenging points. In this figure, the current time slot is τ8. The dashed circles τ9 (u) and τ9 (v )
denote the possible coming vertices, which are unknown for both u and v . u is not sure whether
τ9 (u) will arrive or not since it is random. u cannot estimate the arrival probability of τ9 (u) since
it cannot count the probability according to the arrival of τ1 (u) and τ3 (u), which arrive unevenly.
But u must decide to be active or not at time slot τ9. If τ9 (u) and τ9 (v ) arrive and only one of u and
v is not active, the energy τ9 (u) or τ9 (v ) is wasted. The online stochastic duty cycling problem is
how each device makes a sequence of online decisions independently so that the overall CAT in
each period can be maximized.

6.2 Algorithm Design

By analyzing the online duty cycling graph in Figure 4, we find that the vertices τ (u) ∈ U and
τ (v ) ∈ V arrive in arbitrary orders. Each device has to make online decision to be active or not
for next time slot to establish weighted edges. The online duty cycling problem is similar to the
online weighted bipartite matching problem but more difficult. The idea of the online algorithm is
to establish the weighted edges by waking up each device with certain probability po at each time
slot. If the decision is active at time slot τ , thenα (τ ) = 1 and α (τ ) = 0 otherwise. We summarize the
online duty cycling algorithm in Algorithm 2, where the decision probability po will be analyzed
in the next section. In this algorithm, the decision sequence of each device is implemented by the
second and third steps. Other steps help to find the edge set Eo and are not needed for each device’s
decision.

6.3 Theoretical Performance

The theoretical performance of Algorithm 2 can be analyzed by mapping as an extension of the
typical balls-in-bins problem [Raab and Steger 1998]. In the typical balls-in-bins problem, n balls
are thrown into m bins randomly. Suppose that a vertex of device u in an energy state graph is a
ball and a vertex of device v is a bin. Since the ambient energy arrives randomly, balls are thrown

ALGORITHM 2: Online Duty Cycling Algorithm

Input: The probability γ and the period T .
Output: The decision sequence and edge set Eo .

1: for τ = 1, . . . ,T do

2: At τ − 1, each device u makes a decision αu (τ ) = 1 with probability po and αu (τ ) = 0 otherwise;
3: If C1 and C2 are satisfied, add the edge (τ (u),τ (v )) to Eo and assign it with weight 1;
4: If C1 and C3 are satisfied, add the edge (τ ′(u),τ ′′(v )) to Eo and assign it with weight λ, where τ ′ and

τ ′′ (τ ′,τ ′′ ≤ τ ) are two different time slots and indicate that u or v uses the energy stored at slot τ ′

or τ ′′ respectively.
5: If αu (τ ) = 0 and θu (τ ) = 1, u stores harvested energy.
6: end for
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Fig. 5. Map to balls-in-bins problem.

into bins randomly. Different from the typical balls-in-bins problem, both balls and bins appear
randomly in this work. By Algorithm 2, each device has two kinds of states—sleep and active—
depending on their decisions and available energy. The possible edge connection, correspondingly
the balls are thrown into bins, includes the following cases:

(1) If u and v are active and have available energy at the same time slot, we say that a ball is
thrown into an empty bin. For example, the ball τ1 (u) is thrown into the bin τ1 (v ) and the ball
τ4 (u) is thrown into the bin τ3 (v ) in Figure 5. Two edges are consequently connected.

(2) If u or v has unavailable energy at the same time slot, we say no ball or no bin. For example,
u cannot harvest energy at time slot τ2 and thus has no ball.v cannot harvest energy at τ2 and thus
has no bin.

(3) If only one of u andv is active at the same time slot and has available energy, we say there is
an empty bin or a missing-thrown ball, such as the empty bin τ5 (v ) and the ball τ7 (u) in Figure 5.
We treat the missing-thrown ball as the ball thrown into a nonempty bin. For example, the missing-
thrown ball τ7 (u) is taken to be thrown into the nonempty bin τ9 (v ) in Figure 5.

For the newly defined extension of the balls-in-bins problem, we concern the nonempty bins
containing at least one ball because this kind of bin represents the edge in the online duty cycling
graph. Notice that if a nonempty bin contains more than one ball, the CAT of the bin is not accu-
mulated according to Property 2. For example, if bin τ9 (v ) contains two balls τ7 (u) and τ9 (u), the
CAT is still 1. The probability of the number of nonempty bins can be given by the following fact
by using Azuma’s inequality on appropriately defined Doob martingales. The extension is given
in the following fact.

Fact 1. Suppose that there are n balls and m bins. The balls are thrown into bins randomly. Each

ball may not be thrown and kept with the probability 1 − po . Let A be a certain subset of bins, and let

S be a random variable that equals the number of bins from A with at least one ball. With probability

at least 1 − 2e−ε2m/2, for any ε > 0, we have:

|A|[1 − e−
n
m ] − εpon ≤ E(S ). (7)

Proof. The probability that each bin has at least one ball is 1 − (1 − po

m
)n , so the expectation of

S is E(S ) =
∑

a∈A[1 − (1 − po

m
)n]. Since (1 − 1

m
)n > 1/e , we have the following equation with high

probability: ∑

bin∈A

[
1 − e−

npo
m

]
≤ E(S ). (8)

Notice that S is the function of the placements of the pon balls. It satisfies the 1-Lipschitz condition
since each ball can change the number of empty bins by no more than 1. We may apply Azuma’s
inequality to the Doob martingale (i.e., the changed number of empty bins after each ball placement

is no more than 1) and obtain the probability inequality: p ( |S − E(S ) | ≥ εm) ≤ 2e−ε2m/2. �

The next theorem presents the theoretical performance of Algorithm 2 by approximation anal-
ysis. An algorithm for a maximization problem is said to be an a-approximate algorithm if the
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solution of the algorithm is more than the factor a times of the optimal algorithm solution. The
factor a is called the approximation ratio.

Theorem 4. The online algorithm given in Algorithm 2 has the approximation ratio 1 − e−γ po ,

where γ is the probability able to harvest energy.

Proof. Algorithm 2 results in the edge set Eo . Let Eo = C + D, where sets C and D contain the
synchronous and asynchronous edges, respectively. By recalling that the energy harvesting prob-
ability is γ , each device can harvest energy at n = γm time slots on average i.e., n vertices), where
m = |T |. Suppose that there are two devices u and v . Each of them hasm bins. Among these bins,
there are n bins at which u and v can harvest energy. The edge can be established when the ball
is thrown into one of these n bins. Therefore, among the m bins, there are γn and (1 − γ )n bins
on average that are able to establish the synchronous and asynchronous edges, respectively. In
Algorithm 2, each device wakes up with probability po (i.e., has pon balls on average). To bound
the total number of edges in set C , we have a balls-in-bins problem with pon balls and n out of m
bins. We are interested in lower bounding the number of bins that have at least one ball. Apply-

ing the result in Fact 1, we obtain that C ≥ [1 − e−
po n
m ]γn − εm with probability 1 − e−Ω(n) . Simi-

larly, we can obtain that D ≥ [1 − e−
po n
m ]n′ − εm with probability 1 − e−Ω(n′) , where n′ = (1 − γ )n.

Thus, the weight of the set Eo is Io (T ) = |C | + λ |D | ≥ (1 − e−poγ ) (γn + λn′) − 2εm. Since γ ≤ 1,
(1 − e−poγ ) (γn + λn′) − 2εm ≥ (1 − e−poγ )γ (n + λn′) − 2εm.

Let EOPT denote the edge set obtained by the optimal algorithm. EOPT = COPT + DOPT , where
setCOPT contains the edges with weight one and set DOPT contains the edges with weight λ. The
device and its neighbor have mγ 2 common time slots to harvest energy in expectation and thus
havemγ 2 edges with weight one in expectation (i.e.,COPT =mγ

2 = nγ ). Similarly, it has expected
m(1 − γ )γ edges with weight λ (i.e., DOPT =m(1 − γ )γ = γn′). Thus, the weight of set EOPT is
IOPT (T ) = |COPT | + λ |DOPT | = γ 2m + 2λ(1 − γ )γm = γ (n + λn′).

By summarizing the preceding analysis, we can obtain that the overall CAT (i.e., the overall
edge weight) obtained by Algorithm 2 is In (T )/IOPT (T ) = ( |Cn | + λ |Dn |)/( |COPT | + λ |DOPT |) ≥
1 − e−poγ − 2εm/( |COPT | + λ |DOPT |). We can take the value of ε to be sufficiently small, and then
the approximation ratio of Algorithm 2 is 1 − e−γ po . �

From the preceding theorem, it is easy to find that the performance of the online algorithm is
affected by the parameter po . When po = 1, the theoretical performance of Algorithm 2 reaches its
best value.

Lemma 1. Algorithm 2 reaches its best performance with the approximation ratio 1 − e−γ , when

the active probability po = 1.

Figure 6 shows the numerical evaluation to verify the preceding lemma. The CAT by the online
algorithm increases with the active probability and the energy harvesting probability, and reaches
its maximal value for each energy harvesting probability when the active probability po = 1, as
shown in Figure 6.

7 CORRELATED STOCHASTIC DUTY CYCLING

This section presents the correlated algorithm, under which each device makes decision indepen-
dently after the initial negotiation. Its theoretical performance is close to the optimal one and
better than the online algorithm.

7.1 Correlated Duty Cycling Algorithm

The advantage of the online algorithm is that devices can make decisions independently. To keep
the advantage and improve the performance of the online algorithm, this section presents the
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Fig. 6. Performance of the online

algorithm. λ = 0.8, andT contains

200 slots.

Fig. 7. Correlated duty cycling graph.

correlated algorithm, by which all devices negotiate at the beginning of each period and then make
decisions independently. Figure 7 shows an example of the correlated algorithm. u and v sleep in
the first five slots and store harvested energy. After slot τ5, the stored energy supports devices’
waking up at the time slots when they cannot harvest energy. u stores the energy harvested at τ1

and τ4, and consumes them at τ6 and τ8. v stores the energy harvested at τ1 and τ3, and consumes
them at τ7 and τ8. They can establish edges at τ6, τ7, and τ8 so the energy corresponding to vertices
τ7 (u) and τ6 (v ) can be fully explored. Let variableps ,ps ∈ [0, 1], be the ratio to sleep in each period.
A basic fact is that the energy can be stored or support device operation only after it is harvested.
In summary, the correlated algorithm works as follows:

Each device negotiates the value of ps with its neighbor at the beginning of each
periodT , and stays asleep to store the harvested energy in the first ps |T | time slots
and wakes up with the support of stored or harvested energy in the rest time slots
of T . When there is no available ambient energy to harvest in the rest time slots,
devices can wake up with the support of stored energy until it is exhausted.

The key problem is to determine the value of ps so that the overall CAT in each period can
be maximized. Notice that γps |T | units of energy can be stored during the first ps |T | time slots
on average. The energy can establish γps |T | asynchronous edges in the rest time slots. In the
rest (1 − ps ) |T | time slots, each device keeps active and can harvest γ (1 − ps ) |T | units of energy on
average. Among them, there areγ 2 (1 − ps ) |T | synchronous on average by the concept of the energy
state graph in Section 4.3. These asynchronous vertices can establish asynchronous edges with the
support of the energy stored in the first ps |T | slots. For example, u stores energy τ1 (u) and τ4 (u) in
Figure 7. The stored energy τ1 (u) and asynchronous vertex τ6 (v ) establish an asynchronous edge
at τ6. Meanwhile, both the stored energy τ4 (u) and τ3 (v ) also establish another asynchronous edge
at slot τ8. The number of asynchronous edges is γps |T | + γ 2ps |T | on average. In the rest (1 − ps ) |T |
time slots of T , there are (1 − γ 2) (1 − ps ) |T | time slots left for asynchronous edges since there are
γ 2 (1 − ps ) |T | synchronous vertices on average in the rest (1 − ps ) |T | slots. Therefore, the overall
CAT in the period T can be calculated by the following equation:

I (T ) = γ 2 (1 − ps ) |T | + λ min{(1 − γ 2) (1 − ps ) |T |,
(γ + γ 2)ps |T |}, (9)

where the item (1 − γ 2) (1 − ps ) |T | decreases linearly with ps and the item (γ + γ 2)ps |T | increases
linearly with ps in Equation (9). Given the fixed values of γ and λ, I (T ) can be maximized in
Equation (9) when ps = 1 − γ .
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Lemma 2. Given the fixed values of γ and λ, the overall CAT can be maximized by the correlated

algorithm when ps = 1 − γ .

7.2 Theoretical Performance

Because of Lemma 2, the correlated algorithm can achieve its best performance, denoted by Ic (T ).
According to Equation (9), Ic (T ) = [γ 2 + λ(1 − γ 2)]γ |T |. Recall that the online algorithm achieves
its best performance when the active probability is 1. The best CAT of the online algorithm is
Io (T ) = γ 2 |T | on average. By comparing Ic (T ) to Io (T ), we have the following lemma.

Lemma 3. When γ < λ
1−λ

and γ � 0 and 1, the performance of the correlated algorithm is always

better than the online algorithm.

Comparing to the offline algorithm, the theoretical performance of the correlated algorithm can
be given in the following theorem.

Theorem 5. The correlated algorithm has the approximation ratio as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ , γ is a constant,

1 − 1 −
√
λ

1 +
√
λ
, λ is a constant.

(10)

Proof. The maximal CAT of the offline algorithm is If (T ) = γ 2 |T | + λ(1 − γ )γ |T | on average.

Define a function f (·) of the two variables:γ and λ. Let f (γ , λ) � Ic (T )
If (T ) =

[γ 2+λ (1−γ 2 )]γ |T |
[γ 2+λ (1−γ )γ ] |T | = 1 + γ −

γ

γ+λ (1−γ ) . To find the approximate ratio is equivalent to finding the least value of f (γ , λ), so we can

look for the extremum of the function by its derivation.

Its first-order partial derivatives are f
′

γ (γ , λ) = 1 − λ
[γ+λ (1−γ )]2 ; f

′

λ
(γ , λ) =

γ (1−γ )
[γ+λ (1−γ )]2 .

Let f
′

γ (γ , λ) = 0 and f
′

λ
(γ , λ) = 0, and the critical points are derived: (γ = 0, λ = 1) or (γ = 1, λ =

1).

Its second-order partial derivatives are f
′′

γ γ (γ , λ) = 2λ (1−λ)
[γ+λ (1−γ )]3 ; f

′′

γ λ
(γ , λ) =

λ−γ−λγ

[γ+λ (1−γ )]3 ;

f
′′

λλ
(γ , λ) =

−2γ (1−γ )2

[γ+λ (1−γ )]3 .

Let A � f
′′

γ γ (γ , λ); B � f
′′

γ λ
(γ , λ); C � f

′′

γ λ
(γ , λ).

As to the critical point (γ = 0, λ = 1), we haveA = 0,B = 1,C = 0, and thenAC − B2 ≤ 0. Thus,
the critical point (γ = 0, λ = 1) is not an extreme value point.

As to the critical point (γ = 1, λ = 1), we have A = 0,B = −1,C = 0, and then AC − B2 ≥ 0 and
A = 0. We cannot determine if γ = 1, λ = 1 is an extreme value point or not.

Since the extremum of the function f (γ , λ) does not exist, we discuss the impacts of γ and λ on
the function, respectively.

Let λ be a constant and f (γ ) � 1 + γ − γ

γ+λ (1−γ ) , where 0 ≤ λ ≤ 1. Its first-order derivative is

f
′

γ (γ ) = 1 − λ
[γ+λ (1−γ )]2 . Let f

′
(γ ) = 0, and we can derive γ =

√
λ

1+
√

λ
. When γ ∈ [0,

√
λ

1+
√

λ
], f

′
(γ ) <

0. When γ ∈ [
√

λ

1+
√

λ
, 1], f

′
(γ ) > 0. f (γ ) is monotonously decreasing when γ ∈ [0,

√
λ

1+
√

λ
]. It is

monotonously increasing when γ ∈ [
√

λ

1+
√

λ
, 1]. Therefore, fmin (γ ) = 1 − 1−

√
λ

1+
√

λ
when γ =

√
λ

1+
√

λ
.

Let γ be a constant and f (λ) � 1 + γ − γ

γ+λ (1−γ ) , where 0 ≤ γ ≤ 1. Its first-order derivative is

f
′
(λ) =

γ (1−γ )
[γ+λ (1−γ )]2 . When λ ∈ [0, 1], we can derive that f

′
(λ) > 0. Thus, when λ ∈ [0, 1], f (λ) is

monotone increasing. When λ = 0, fmin (λ) = γ . �

The rest of this section illustrates the performance of the offline, online, and correlated algo-
rithms by the numerical evaluation. The performance of both the offline and correlated algorithms
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Fig. 8. The CAT of the correlated algorithm with charge efficiency. T contains 200 time slots.

Fig. 9. T contains 200 slots. λ = 0.8, and po = 1.

increases with increasing charge efficiency as illustrated in Figure 8(a), where each group repre-
sents thatγ takes a specific value, and contains two curves corresponding to the CATs of the offline
and correlated algorithms, respectively.

Given the charge efficiency λ and the energy harvesting probability γ , there is the best sleep
ratio ps by which the correlated algorithm can obtain its maximal CAT in Figure 9(a). It shows a
case where the charge efficiency λ = 0.8, under which the best value of ps is 0.79, 0.60, 0.41, and
0.18 when γ is 0.2, 0.4, 0.6, and 0.8, respectively. It is quite close to the theoretical result ps = 1 − γ .
Figure 8(b) shows the relation of the best sleep ratio with λ and γ . In this figure, ps decreases with
γ and increases with the charge efficiency λ. Figure 9 shows the performance of the correlated
algorithm under the case λ = 0.8. Figure 9(b) compares the performance of the offline, online, and
correlated algorithms. The active probability is set to be 1 for the online algorithm since it can
achieve its best performance according to the analysis in Section 6.3. The CAT of the correlated
algorithm reaches at least 93.81% of the online algorithm (i.e., the optimal algorithm), can be up to
84.29% better than the online algorithm when γ = 0.48.

8 EXPERIMENTAL EVALUATION

This section gives the detailed experiment setting and evaluates the performance of the offline, on-
line, and correlated algorithms based on our real energy harvesting platform. By analyzing the data
collected from the platform, we extract the features—heterogeneity and randomness—to evaluate
the experimental performance of the three algorithms.

8.1 Experiment Setting

The real solar harvesting platform—SolarMote—consists of four main components: the solar panel,
the battery, the controller, and the TelosB sensor node [Zhang and Li 2014]. The solar panel har-
vests energy to power the latter two components. The TelosB can sense data and communicate
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Fig. 10. CAT and SAT percentages under the three algorithms

when λ = 0.8 and po = 50% for the online algorithm.

Fig. 11. The SAT of the online

algorithm vs. active probabil-

ity.

with others. The controller can manage the power direction: to power TelosB or to charge the
battery. There are a total of 16 SolarMotes in the experiment. Seven of them have solar panels of
size 70 × 28 mm and the rest have ones of size 80 × 38 mm so as to make the heterogeneity of the
harvested energy obvious.

In this experiment, we consider the communication among device pairs, which can be applied to
some popular applications such as data aggregation [Chang et al. 2017] or packet delivery [Lu et al.
2017]. Fifteen devices and one sink are deployed to harvest solar energy, and to sample and deliver
the data of the temperature and solar luminous density. There are a total of eight pairs of devices,
among which seven pairs of solar sensor devices run the three algorithms. The sink connects with
a personal computer to collect data from devices. The period and the slot respectively are set to be
10 hours and 1 minute.

8.2 Result Analysis

This section measures the parameter CAT to evaluate the overall performance of the offline, corre-
lated, and online algorithms. We introduce some metrics to extract the features of the experiment
data including Synchronous Active Time (SAT), active probability, and heterogeneity, and analyze
their impacts on the CAT. The SAT is the sum of the synchronous edges’ weight, so it is a part
of the CAT. Heterogeneity is defined as the percentage of the non-SAT out of the CAT between a
pair of sensor nodes. Higher heterogeneity results in less SAT among devices. These metrics are
determined by the energy harvesting probability γ , but also the three algorithms since the algo-
rithms may result in different CAT and SAT. By selecting data from five pairs of nodes out of seven,
which last 7 days of the experiment, we present the analysis result of the experiment data as the
following figures. Notice that the total experiment time of the five pairs of nodes are not exactly
the same, so we present the CAT percentage instead of the CAT in these figures. The former equals
the fraction of the CAT divided by the experiment time. For example, if the experiment time for
one node pair is 10 hours and the CAT is 2 hours, the CAT percentage is 20%.

CAT and SAT percentage. Figure 10(a) shows the CAT percentage obtained by the offline, online,
and correlated algorithms among the five pairs of devices, which are denoted by A, B, C, D, and E
under the different energy harvesting probabilityγ . The energy harvesting probabilities of the five
pairs are 44.19%, 48.03%, 55.04%, 59.94%, and 76.67%. The CAT percentages of the three algorithms
increase withγ . The correlated algorithm performs over the online algorithm and quite close to the
offline algorithm. It verifies the theoretical results in Figure 9(b). The SAT of the online algorithm
reaches its maximal value when po = 1 as shown in Figure 11. Similarly, from the experiment data
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Fig. 12. The CAT of the online algorithm changes vs. active probability.

Fig. 13. Heterogeneity of the three algorithms when λ = 0.8 and the active probability po = 50%.

in Figure 12, we can find that the online algorithm gains its maximal CAT under each energy har-
vesting probability when it sets the active probability po = 1, which is the same as the theoretical
conclusion in Lemma 1.

Figure 10(b) shows the SAT percentage of the three algorithms when the active probability of
the online algorithm is 50%. Among the nodes pairs A, B, C, D, and E, SATs of the offline algorithm
occupy 66.27%, 86.21%, 88.76%, 87.65%, and 91.8% of their CAT s, respectively, whereas those of the
online algorithm are 34.45%, 48.06%, 55.56%, 65.61%, and 80.28% of their CATs. SATs of the offline
algorithm are 3.22%, 57.89%, 34.12%, 72.34%, and 93.64% of their CATs, respectively. In most cases,
the CAT by the three algorithms mainly consists of the SAT, except the pairs A and C under the
offline algorithm. Furthermore, the SAT percentage out of the CAT percentage does not increase
with the energy harvesting probability. These two phenomena are caused by heterogeneity.
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Fig. 14. CAT percentages of the three algorithms change with charge efficiency under different energy har-

vesting probabilities.

Heterogeneity. Heterogeneity causes the occurrences of the asynchronous edges and their
nonuniform distribution in the energy state graph. The heterogeneities of the three algorithms
are presented in Figure 13. First, all of the three algorithms lose their CAT due to the heterogene-
ity and the imperfect charge efficiency. For example, although the offline algorithm is optimal, its
CAT percentage can reach the energy harvesting probability up to at most 98.43% as shown in Fig-
ure 10(a). Second, the heterogeneity causes the nonuniform distribution of the edges in the energy
state graph. It brings an obvious effect on the correlated algorithm. Figure 10(b) shows that the
SAT of the correlated algorithm between the node pair A is as low as 1.15%, and lower than 6.55%
of the online algorithm. We can see that the heterogeneity of the correlated algorithm between
pair A is high, up to 96.78% as shown in Figure 13. By checking the experiment data, we find that
node pair A can harvest energy almost during the earlier part of each period, during which the
correlated algorithm sets nodes to sleep as in the example in Figure 7. By comparing Figures 10(b)
and 13, it is easy to discover that the SAT percentage of the correlated algorithm does not increase
with the energy harvesting probability, but with the decreasing of its heterogeneity. Heterogeneity
has an inversely proportional effect on the SAT of the online and correlated algorithms but not
the online algorithm.

Charge efficiency. Charge efficiency is the direct factor to reduce the CAT. Figure 14 shows the
CAT percentages of the three algorithms with charge efficiency under five energy harvesting prob-
abilities, where the online algorithm sets the active probability to be 1. The charge efficiency is hard
to measure directly, especially when the natural energy arrives randomly. To evaluate the impact
of the charge efficiency, this section takes the value from 0 to 1 with the interval 0.2 to estimate
its real value. With Figure 14, we can find that the CAT percentage of the offline and correlated
algorithms increases with charge efficiency linearly under the five energy harvesting probabilities.

Figure 14(a) and (c) show that the CAT percentages of the offline and correlated algorithms
change linearly with the charge efficiency under the five energy harvesting probabilities. In Fig-
ure 14(a), the increasing rates of these five curves are 0.17185, 0.08006, 0.07923, 0.07971, and 0.06,
corresponding to the five energy harvesting probabilities γ = 44.19%, 48.03%, 55.04%, 59.94%, and
76.67%. So we can find that the higher energy harvesting probability results in the lower increasing
rate by the offline algorithm. In Figure 14(c), the increasing rates of these five curves are 0.4304,
0.2288, 0.3949, 0.1907, and 0.06, corresponding to the five energy harvesting probabilities. Recall
that the heterogeneities of the correlated algorithm are 96.78%, 42.11%, 65.88%, 27.66%, and 6.36%
under the five probabilities. The higher heterogeneity results in a higher increasing rate by the
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Fig. 15. CAT percentages of the three algorithms change with charge efficiency when the online algorithm

sets the active probability to 1.

correlated algorithm. Figure 15 shows the comparison on the CAT percentage with charge effi-
ciency under the five energy harvesting probabilities. The energy harvesting probability γ almost
has no effect on the increasing ratio of the online and online algorithms but not the correlated
algorithm. In Figure 15, the increasing ratio of the correlated algorithm is almost consistent with
that of the offline algorithm. The performance of the correlated algorithm is lower than that of the
online and offline algorithms when the energy harvesting probability is low as shown in Figure 15.

Energy harvesting probability. Energy harvesting probability has fundamental impacts on the
three algorithms. In this section, we label the energy harvesting probability on each figure. Fig-
ure 10 shows that both the offline and online algorithms can obtain more CAT and SAT when
the energy harvesting probability is higher. Figure 12 shows that the CAT of the online algo-
rithm increases with the energy harvesting probability when the algorithm takes different active
probabilities and the charge efficiency is set to be several values. Figure 14 shows that the CAT
percentages of the three algorithms increase with the energy harvesting probability no matter the
charge efficiency. Meanwhile, the SAT of the algorithm has a similar property—that is, higher en-
ergy harvesting probability results in more SAT under different active probabilities, as shown in
Figure 11.

9 CONCLUSION

This article studies the duty cycling strategy by considering factors including the randomness,
heterogeneity of the energy availability, the power weak and limited, and the imperfect charge
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efficiency. It brings up a new duty cycling problem, which we call the stochastic duty cycling

problem. To solve the problem, three algorithms are proposed with the goal to improve the uti-
lization efficiency of the harvested energy. We find that some parameters, the energy harvesting
probability and heterogeneity, including the charge efficiency, also have great effects on our
algorithms. Theoretical and experimental analysis are presented to evaluate the performance of
the algorithms. The results indicate that the offline algorithm is optimal. The correlated algorithm
has the approximation ratio and is very close to the offline algorithm but is affected easily by
the heterogeneity. The online algorithm has the approximation ratio 1 − e−γ but is not easily
affected by the heterogeneity. The correlated and online algorithms are more suitable to the
practical applications than the offline algorithm. The online algorithm is more tolerable to the
heterogeneity than the correlated algorithm.

The P2P model can be extended to the networked case, such as multihop networks, where each
device may have more than one neighbor. In multihop networks, the different pairs of neighboring
nodes can be assigned with different periods by the coloring technique [Wang et al. 2008]. For
example, device u1 has two neighbors, v1 and v2, and their communication can be operated with
the TDMA mechanism. One pair of nodes,u1 andv1, can communicate in periodT1. The other pair
of nodes, u1 and v2, can operate in period T2. In this way, both of the two node pairs work under
the P2P model.

There are other methods and directions to deal with the problem discussed in this article. For
example, the neighboring nodes can communicate in the same period, and each of them is active
in one subset of time slots in the period. This method can allocate the time slots precisely but leads
to more complex calculation than ours. One possible direction for the harvested energy allocation
is to consider the network dynamic. Imperfect charge efficiency is one aspect of the network dy-
namic, which means that the energy efficiency can be changed because of not only the charge
efficiency but also other factors, such as dynamic link quality and transmission power.
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