
Copyright © 2015 Pearson Education, Inc.

Jianhui Zhang,
Ph.D., Associate Prof.

College of Computer Science and
Technology, Hangzhou Dianzi Univ.

Email: jh_zhang@hdu.edu.cn

Copyright © 2015 Pearson Education, Inc.

Chapter 5:
Algorithms

Computer Science: An Overview
Eleventh Edition

by
J. Glenn Brookshear

Dennis Brylow

Copyright © 2015 Pearson Education, Inc. 5-3

Chapter 5: Algorithms

• 5.1 The Concept of an Algorithm
• 5.2 Algorithm Representation
• 5.3 Algorithm Discovery
• 5.4 Iterative Structures
• 5.5 Recursive Structures
• 5.6 Efficiency and Correctness

Copyright © 2015 Pearson Education, Inc. 5-4

Definition of Algorithm

An algorithm is an ordered set of
unambiguous, executable steps
that defines a terminating process.

Copyright © 2015 Pearson Education, Inc. 5-5

Algorithm Representation

• Requires well-defined primitives
• A collection of primitives constitutes a

programming language.

Copyright © 2015 Pearson Education, Inc. 5-6

Figure 5.2 Folding a bird from a
square piece of paper

Copyright © 2015 Pearson Education, Inc. 5-7

Figure 5.3 Origami primitives

Copyright © 2015 Pearson Education, Inc. 5-8

Pseudocode Primitives

• Assignment
name = expression

• Example
RemainingFunds = CheckingBalance +

SavingsBalance

Copyright © 2015 Pearson Education, Inc. 5-9

Pseudocode Primitives (continued)

• Conditional selection
if (condition):

activity

• Example
if (sales have decreased):

lower the price by 5%

Copyright © 2015 Pearson Education, Inc. 5-10

Pseudocode Primitives (continued)

• Conditional selection
if (condition):

activity
else:

activity

• Example
if (year is leap year):

daily total = total / 366
else:

daily total = total / 365

Copyright © 2015 Pearson Education, Inc. 5-11

Pseudocode Primitives (continued)

• Repeated execution
while (condition):

body

• Example
while (tickets remain to be sold):

sell a ticket

Copyright © 2015 Pearson Education, Inc. 5-12

Pseudocode Primitives (continued)

• Indentation shows nested conditions
if (not raining):

if (temperature == hot):
go swimming

else:
play golf

else:
watch television

Copyright © 2015 Pearson Education, Inc. 5-13

Pseudocode Primitives (continued)

• Define a function
def name():

• Example
def ProcessLoan():

• Executing a function
if (. . .):

ProcessLoan()
else:

RejectApplication()

Copyright © 2015 Pearson Education, Inc. 5-14

Figure 5.4 The procedure Greetings
in pseudocode

def Greetings():
Count = 3
while (Count > 0):

print('Hello')
Count = Count ‐ 1

Copyright © 2015 Pearson Education, Inc. 5-15

Pseudocode Primitives (continued)

• Using parameters
def Sort(List):

.

.

• Executing Sort on different lists
Sort(the membership list)

Sort(the wedding guest list)

Copyright © 2015 Pearson Education, Inc. 5-16

Polya’s Problem Solving Steps

• 1. Understand the problem.
• 2. Devise a plan for solving the problem.
• 3. Carry out the plan.
• 4. Evaluate the solution for accuracy and

its potential as a tool for solving other
problems.

Copyright © 2015 Pearson Education, Inc. 5-17

Polya’s Steps in the Context of
Program Development
• 1. Understand the problem.
• 2. Get an idea of how an algorithmic

function might solve the problem.
• 3. Formulate the algorithm and represent it

as a program.
• 4. Evaluate the solution for accuracy and

its potential as a tool for solving other
problems.

Copyright © 2015 Pearson Education, Inc. 5-18

Getting a Foot in the Door

• Try working the problem backwards
• Solve an easier related problem

– Relax some of the problem constraints
– Solve pieces of the problem first (bottom up

methodology)
• Stepwise refinement: Divide the problem into

smaller problems (top-down methodology)

Copyright © 2015 Pearson Education, Inc. 5-19

Ages of Children Problem

• Person A is charged with the task of determining
the ages of B’s three children.
– B tells A that the product of the children’s ages is 36.
– A replies that another clue is required.
– B tells A the sum of the children’s ages.
– A replies that another clue is needed.
– B tells A that the oldest child plays the piano.
– A tells B the ages of the three children.

• How old are the three children?

Copyright © 2015 Pearson Education, Inc. 5-20

Figure 5.5

Copyright © 2015 Pearson Education, Inc. 5-21

Figure 5.6 The sequential search
algorithm in pseudocode
def Search (List, TargetValue):

if (List is empty):
Declare search a failure

else:
Select the first entry in List to be TestEntry
while (TargetValue > TestEntry and entries remain):

Select the next entry in List as TestEntry
if (TargetValue == TestEntry):

Declare search a success
else:

Declare search a failure

Copyright © 2015 Pearson Education, Inc. 5-22

Figure 5.7 Components of repetitive
control

Copyright © 2015 Pearson Education, Inc. 5-23

Iterative Structures

• Pretest loop:
while (condition):

body

• Posttest loop:
repeat:

body
until(condition)

Copyright © 2015 Pearson Education, Inc. 5-24

Figure 5.8 The while loop structure

Copyright © 2015 Pearson Education, Inc. 5-25

Figure 5.9 The repeat loop structure

Copyright © 2015 Pearson Education, Inc. 5-26

Figure 5.10 Sorting the list Fred, Alex,
Diana, Byron, and Carol alphabetically

Copyright © 2015 Pearson Education, Inc. 5-27

Figure 5.11 The insertion sort
algorithm expressed in pseudocode

def Sort(List):
N = 2
while (N <= length of List):

Pivot = Nth entry in List
Remove Nth entry leaving a hole in List
while (there is an Entry above the

hole and Entry > Pivot):
Move Entry down into the hole leaving
a hole in the list above the Entry

Move Pivot into the hole
N = N + 1

Copyright © 2015 Pearson Education, Inc. 5-28

Recursion

• The execution of a procedure leads to
another execution of the procedure.

• Multiple activations of the procedure are
formed, all but one of which are waiting for
other activations to complete.

Copyright © 2015 Pearson Education, Inc. 5-29

Figure 5.12 Applying our strategy to
search a list for the entry John

Copyright © 2015 Pearson Education, Inc. 5-30

Figure 5.13 A first draft of the binary
search technique

if (List is empty):
Report that the search failed

else:
TestEntry = middle entry in the List
if (TargetValue == TestEntry):

Report that the search succeeded
if (TargetValue < TestEntry):

Search the portion of List preceding TestEntry for
TargetValue, and report the result of that search

if (TargetValue > TestEntry):
Search the portion of List following TestEntry for
TargetValue, and report the result of that search

Copyright © 2015 Pearson Education, Inc. 5-31

Figure 5.14 The binary search
algorithm in pseudocode
def Search(List, TargetValue):

if (List is empty):
Report that the search failed

else:
TestEntry = middle entry in the List
if (TargetValue == TestEntry):

Report that the search succeeded
if (TargetValue < TestEntry):

Sublist = portion of List preceding TestEntry
Search(Sublist, TargetValue)

if (TargetValue < TestEntry):
Sublist = portion of List following TestEntry
Search(Sublist, TargetValue)

Copyright © 2015 Pearson Education, Inc. 5-32

Figure 5.15

Copyright © 2015 Pearson Education, Inc. 5-33

Figure 5.16

Copyright © 2015 Pearson Education, Inc. 5-34

Figure 5.17

Copyright © 2015 Pearson Education, Inc. 5-35

Algorithm Efficiency

• Measured as number of instructions
executed

• Big theta notation: Used to represent
efficiency classes
– Example: Insertion sort is in Θ(n2)

• Best, worst, and average case analysis

Copyright © 2015 Pearson Education, Inc. 5-36

Figure 5.18 Applying the insertion sort in
a worst-case situation

Copyright © 2015 Pearson Education, Inc. 5-37

Figure 5.19 Graph of the worst-case
analysis of the insertion sort algorithm

Copyright © 2015 Pearson Education, Inc. 5-38

Figure 5.20 Graph of the worst-case
analysis of the binary search algorithm

Copyright © 2015 Pearson Education, Inc. 5-39

Software Verification

• Proof of correctness
– Assertions

• Preconditions
• Loop invariants

• Testing

Copyright © 2015 Pearson Education, Inc. 5-40

Chain Separating Problem

• A traveler has a gold chain of seven links.
• He must stay at an isolated hotel for seven nights.
• The rent each night consists of one link from the

chain.
• What is the fewest number of links that must be

cut so that the traveler can pay the hotel one link
of the chain each morning without paying for
lodging in advance?

Copyright © 2015 Pearson Education, Inc. 5-41

Figure 5.21 Separating the chain
using only three cuts

Copyright © 2015 Pearson Education, Inc. 5-42

Figure 5.22 Solving the problem with
only one cut

Copyright © 2015 Pearson Education, Inc. 5-43

Figure 5.23 The assertions associated
with a typical while structure

Copyright © 2015 Pearson Education, Inc. 0-44

Q&A

