Computer Science Guidance

Jianhui Zhang,

Ph.D., Associate Prof.

College of Computer Science and
Technology, Hangzhou Dianzi Univ.

Email: jh_zhang@hdu.edu.cn

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.

Chapter 6:
Programming Languages

Computer Science: An Overview
Eleventh Edition

by
J. Glenn Brookshear
Dennis Brylow

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.
T

6.1 Historical Perspective

6.2 Traditional Programming Concepts
6.3 Procedural Units

6.4 Language Implementation

6.5 Object Oriented Programming

6.6 Programming Concurrent Activities
6.7 Declarative Programming

Copyright © 2015 Pearson Education, Inc.

6-3

Figure 6.1 Generations of
programming languages

Problems solved in an environment Problems solved in an environment
in which the human must conform in which the machine conforms
to the machine’s characteristics to the human’s characteristics

[| I | I | | | I | I | I |// /LI—|_I_
1st 2nd 3rd 4th
Generations

Copyright © 2015 Pearson Education, Inc.

A mnemonic system for representing
machine instructions
Mnemonic names for op-codes

Program variables or identifiers: Descriptive
names for memory locations, chosen by the
programmer

Copyright © 2015 Pearson Education, Inc.

6-5

One-to-one correspondence between
machine instructions and assembly
Instructions

Programmer must think like the machine
Inherently machine-dependent

Converted to machine language by a
program called an assembler

Copyright © 2015 Pearson Education, Inc.

6-6

Machine language Assembly language

156C LD R5, Price

166D LD R6, ShipCharge
5056 ADDI RO, R5 R6
30CE ST RO, TotalCost

C000 HLT

Copyright © 2015 Pearson Education, Inc. 6-7

Uses high-level primitives
Similar to our pseudocode in Chapter 5

Machine independent (mostly)
Examples: FORTRAN, COBOL

Each primitive corresponds to a sequence
of machine language instructions

Converted to machine language by a
program called a compiler

Copyright © 2015 Pearson Education, Inc.

6-8

Figure 6.2 The evolution of
programming paradigms

: Lk 'ML Scheme ' !
Functional
| 1 | | | |
I | | | | |
1 | | I Visual Basic| C# Object-oriented
| | | Smalltalk | Ce+ | Java |
| | | | | |
Machine | FORTRAN | Basic ¢! lAda I python | Imperative
.
Languaﬁﬂsi COBOL ALGOL APL : Pascal : |
I I gpss I Prolog ! ' I
| A A ————————— Declarative
I [I saL I I
1 I | I | I
1950 1960 1970 1980 1990 2000

Copyright © 2015 Pearson Education, Inc.

balancing constructed from simpler
functions

Copyright © 2015 Pearson Education, Inc. 6-10

Figure 6.4 The composition of a

typical imperative program or
program unit

Program

The first part consists of
_ declaration statements
describing the data that is

The second part consists
_ of imperative statements
describing the action to
be performed.

Copyright © 2015 Pearson Education, Inc.

manipulated by the program.

6-11

Integer: Whole numbers

Real (float): Numbers with fractions
Character: Symbols

Boolean: True/false

Copyright © 2015 Pearson Education, Inc.

6-12

float Length, Width;
int Price, Total, Tax;
char Symbol;

int WeightLimit = 100;

Copyright © 2015 Pearson Education, Inc.

6-13

Conceptual shape or arrangement of data

A common data structure is the array
In C

int Scores[2][9];

In FORTRAN
INTEGER Scores(2,9)

Copyright © 2015 Pearson Education, Inc.

6-14

Figure 6.5 A two-dimensional array
with two rows and nine columns

Scores

\
Scores (2,4) in \ Scores [1] [3]inC
FORTRAN where and its derivatives
indices start at one. where indices start

at zero.

Copyright © 2015 Pearson Education, Inc. 6-15

Figure 6.6 The conceptual structure of the
aggregate type Employee

Meredith W Linsmeyer
hhh““ﬁEmployee.Name

Empl — 23
rproyes HHH““HEmployee.Age

62 —

Employee.SkillRating

struct { char Name[25];
int Age;
float SkillRating;
} Employee;

Copyright © 2015 Pearson Education, Inc.

6-16

In C, C++, C#, Java

L =X +Y,;
In Ada
L = X + VY,

In APL (A Programming Language)
L — X + Y

Copyright © 2015 Pearson Education, Inc.

6-17

Go to statement

goto 40

20 Evade()
goto 70

40 if (KryptonitelLevel < LethalDose) then goto 60
goto 20

60 RescueDamsel()

70

As a single statement

if (KryptonitelLevel < LethalDose):
RescueDamsel ()
else:

Evade()

Copyright © 2015 Pearson Education, Inc. 6-18

If in Python

if (condition):
statementA

else:
statementB

In C, C++, C#, and Java

if (condition) statementA; else statementB;

In Ada

IF condition THEN
statementA;
ELSE
statementB;
END IF;

Copyright © 2015 Pearson Education, Inc.

6-19

While in Python

while (condition):
body

In C, C++, C#, and Java

while (condition)
{ body }

In Ada

WHILE condition LOOP
body
END LOOP;

Copyright © 2015 Pearson Education, Inc.

6-20

Switch statement in C, C++, C#, and Java

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD; }

In Ada

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;
END CASE;

Copyright © 2015 Pearson Education, Inc. 6-21

its representation in C++, C#, and
Java

for (int Count = 1; Count < 4; Count++)
body ;

Copyright © 2015 Pearson Education, Inc. 6-22

Explanatory statements within a program
Helpful when a human reads a program
Ignored by the compiler

/* This is a comment. */

// This 1is a comment

Copyright © 2015 Pearson Education, Inc. 6-23

Many terms for this concept:
Subprogram, subroutine, procedure, method, function

Unit begins with the function’s header
Local versus Global Variables
Formal versus Actual Parameters

Passing parameters by value versus
reference

Copyright © 2015 Pearson Education, Inc. 6-24

involving a function

Calling
program unit

Control is Function

transferred
to function.

Function is

Calling program executed.

unit requests
function.

Calling program
unit continues.

Control is returned to
calling environment when
function is completed.

Copyright © 2015 Pearson Education, Inc.

6-25

Figure 6.9 The function
ProjectPopulation written in the
programming language C

Starting the header with the The formal parameter list. Note
term “void” is the way thata C that C, as with many programming
programmer specifies that the languages, requires that the data
program unit returns no value. type of each parameter be specified.
We will learn about functions

shortly.

void ProjectPopulation (float GrowthRate)

This declares a local variable

: . —
{ int Year; named Year.

Population (0] = 100.0;
for (Year = 0; Year =< 10; Year++)
Population[Year+l] = Population[Year] + (Population[Year] * GrowthRate);

}

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

Copyright © 2015 Pearson Education, Inc. 6-26

a. When the function is called, a copy of the data is given to
the function

F i g U re 6 . 1 O Calling environment Function’s environment

Executing the
function Demo
and passing
parameters by
value

b. and the function manipulates its copy.

Calling environment Function’s environment

¢. Thus, when the function has terminated, the calling
environment has not been changed.

Calling environment

a. When the function is called, the formal parameter becomes
a reference to the actual parameter.

F I g u re 6 . 1 1 Calling environment Function’s environment :
Executing the
function Demo

and passing
parameters by
reference

b. Thus, changes directed by the function are made to the
actual parameter

Calling environment Function’s environment

c. and are, therefore, preserved after the function has
terminated.

Calling environment

Figure 6.12 The fruitful function

CylinderVolume written in the
programming language C

The function header begins with
the type of the data that will
/ be returned.

/

Declare a
{ float Volume; \Iocal variable

named Volume.

Volume = 3.14 * Radius * Radius * Height;

\ Compute the volume of

return Volume; the cylinder.

\Terminate the function and
} return the value of the

variable Volume.

float CylinderVolume (float Radius, float Height)

Copyright © 2015 Pearson Education, Inc.

6-29

!lgure ! I! ”!e !ranslallon Process

Object
program

Source
program

Copyright © 2015 Pearson Education, Inc. 6-30

P
Figure 6.14 A syntax diagram

of Python'’s if-then-else statement

Copyright © 2015 Pearson Education, Inc.

Figure 6.15 Syntax diagrams describing
the structure of a simple algebraic
expression

Expression

Copyright © 2015 Pearson Education, Inc. 6-32

string X + y * z based on the syntax
diagrams in Figure 6.17

" |
e

z
Copyright © 2015 Pearson Education, Inc. 6-33

Figure 6.17

Two distinct
parse trees for -
the statement

if B1 then if B2
then S1 else S2

e 618 Anobjsciorenied

approach to the translation process

Copyright © 2015 Pearson Education, Inc. 6-35

Object: Active program unit containing
both data and procedures

Class: A template from which objects are
constructed

An object is called an instance of the class.

Copyright © 2015 Pearson Education, Inc. 6-36

Figure 6.19 The structure of a class
describing a laser weapon in a

computer game

class LaserClass

{ int RemainingPower = 100; —

Vienlel Euhanbleine ()
T oaan |

Vienl@! Ethamb@iEE ()

Vierlel fEaae ()

(.

Description of the data
that will reside inside of
each object of this “type.”

\ Methods describing how an
{ } / object of this “type” should

respond to various messages

Copyright © 2015 Pearson Education, Inc.

6-37

Instance Variable: Variable within an
object

Holds information within the object
Method: Procedure within an object

Describes the actions that the object can
perform
Constructor: Special method used to
initialize a new object when it is first
constructed

Copyright © 2015 Pearson Education, Inc. 6-38

Figure 6.21 A class with a
constructor

LaserClass (InitialPower)
{ RemainingPower = InitialPower;

}

void turnRight ()
void turnLeft ()
{ «on)

void fire ()

{ o)

class LaserClass Constructor assigns @
value to RemainingPower

{ int RemainingPower; when an object is created.

Copyright © 2015 Pearson Education, Inc.

6-39

Encapsulation: A way of restricting
access to the internal components of an
object

Private

Public

Copyright © 2015 Pearson Education, Inc. 6-40

Figure 6.22 Our LaserClass definition
using encapsulation as it would appear in

a Java or C# program

Components in the class
are designated public or
private depending on
whether they should be
accessible from other
program units.

Copyright © 2015 Pearson Education, Inc.

class LaserClass

/private int RemainingPower;

| _public LaserClass (InitialPower)

{RemainingPower = InitialPower;

}

\public void turnRight ()

public void turnLeft ()

public void fire ()

[}
}

6-41

Inheritance: Allows new classes to be
defined in terms of previously defined
classes

Polymorphism: Allows method calls to be
interpreted by the object that receives the
call

Copyright © 2015 Pearson Education, Inc. 6-42

Parallel (or concurrent) processing:
simultaneous execution of multiple
processes

True concurrent processing requires multiple
CPUs

Can be simulated using time-sharing with a
single CPU

Copyright © 2015 Pearson Education, Inc. 6-43

Figure 6.23 Spawning threads

Calling
program unit

Function

Function is
activated.

Calling program
unit requests
function.

Both units
execute
simultaneously.

Copyright © 2015 Pearson Education, Inc.

6-44

Mutual Exclusion: A method for ensuring
that data can be accessed by only one
process at a time

Monitor: A data item augmented with the
ability to control access to itself

Copyright © 2015 Pearson Education, Inc. 6-45

Resolution: Combining two or more statements
to produce a new statement (that is a logical
consequence of the originals).

Example: (P orR Q) AND (R OrR —Q)
resolves to (P oOrR R)

Resolvent: A new statement deduced by resolution

Clause form: A statement whose elementary

components are connected by the Boolean operation
OR

Unification: Assigning a value to a variable so
that two statements become “compatible.”

Copyright © 2015 Pearson Education, Inc.

6-46

OR Q) and (R OR Q) to produce (P OR R)

Copyright © 2015 Pearson Education, Inc. 6-47

Figure 6.25 Resolving the statements
(P OR Q), (R OR 7Q), 7R, and =P

PORO ROR—-O

empty clause

Copyright © 2015 Pearson Education, Inc

Fact: A Prolog statement establishing a fact
Consists of a single predicate
Form: predicateName(arguments).
Example: parent (bill, mary).
Rule: A Prolog statement establishing a general
rule

Form: conclusion :- premise.
.- means “if”
Example: wise (x) :- old(x).

Example: faster (X,7) :- faster(X,Y), faster(Y,Z).

Copyright © 2015 Pearson Education, Inc. 6-49

&A

Copyright © 2015 Pearson Education, Inc.
0-50

