
Copyright © 2015 Pearson Education, Inc.

Jianhui Zhang,
Ph.D., Associate Prof.

College of Computer Science and
Technology, Hangzhou Dianzi Univ.

Email: jh_zhang@hdu.edu.cn

Copyright © 2015 Pearson Education, Inc.

Computer Science: An Overview
Eleventh Edition

by
J. Glenn Brookshear

Dennis Brylow

Chapter 6:
Programming Languages

Copyright © 2015 Pearson Education, Inc. 6-3

Chapter 6: Programming Languages

• 6.1 Historical Perspective
• 6.2 Traditional Programming Concepts
• 6.3 Procedural Units
• 6.4 Language Implementation
• 6.5 Object Oriented Programming
• 6.6 Programming Concurrent Activities
• 6.7 Declarative Programming

Copyright © 2015 Pearson Education, Inc. 6-4

Figure 6.1 Generations of
programming languages

Copyright © 2015 Pearson Education, Inc. 6-5

Second-generation:
Assembly language

• A mnemonic system for representing
machine instructions
– Mnemonic names for op-codes
– Program variables or identifiers: Descriptive

names for memory locations, chosen by the
programmer

Copyright © 2015 Pearson Education, Inc. 6-6

Assembly Language Characteristics

• One-to-one correspondence between
machine instructions and assembly
instructions
– Programmer must think like the machine

• Inherently machine-dependent
• Converted to machine language by a

program called an assembler

Copyright © 2015 Pearson Education, Inc. 6-7

Program Example

Machine language

156C
166D
5056
30CE
C000

Assembly language

LD R5, Price
LD R6, ShipCharge
ADDI R0, R5 R6
ST R0, TotalCost
HLT

Copyright © 2015 Pearson Education, Inc. 6-8

Third Generation Language

• Uses high-level primitives
– Similar to our pseudocode in Chapter 5

• Machine independent (mostly)
• Examples: FORTRAN, COBOL
• Each primitive corresponds to a sequence

of machine language instructions
• Converted to machine language by a

program called a compiler

Copyright © 2015 Pearson Education, Inc. 6-9

Figure 6.2 The evolution of
programming paradigms

Copyright © 2015 Pearson Education, Inc. 6-10

Figure 6.3 A function for checkbook
balancing constructed from simpler
functions

Copyright © 2015 Pearson Education, Inc. 6-11

Figure 6.4 The composition of a
typical imperative program or
program unit

Copyright © 2015 Pearson Education, Inc. 6-12

Data Types

• Integer: Whole numbers
• Real (float): Numbers with fractions
• Character: Symbols
• Boolean: True/false

Copyright © 2015 Pearson Education, Inc. 6-13

Variables and Data types

float Length, Width;
int Price, Total, Tax;
char Symbol;

int WeightLimit = 100;

Copyright © 2015 Pearson Education, Inc. 6-14

Data Structure

• Conceptual shape or arrangement of data
• A common data structure is the array

– In C
int Scores[2][9];

– In FORTRAN
INTEGER Scores(2,9)

Copyright © 2015 Pearson Education, Inc. 6-15

Figure 6.5 A two-dimensional array
with two rows and nine columns

Copyright © 2015 Pearson Education, Inc. 6-16

Figure 6.6 The conceptual structure of the
aggregate type Employee

struct { char Name[25];
int Age;
float SkillRating;

} Employee;

Copyright © 2015 Pearson Education, Inc.

Assignment Statements

• In C, C++, C#, Java
Z = X + y;

• In Ada
Z := X + y;

• In APL (A Programming Language)
Z ← X + y

6-17

Copyright © 2015 Pearson Education, Inc.

Control Statements
• Go to statement

goto 40
20 Evade()

goto 70
40 if (KryptoniteLevel < LethalDose) then goto 60

goto 20
60 RescueDamsel()
70 ...

• As a single statement
if (KryptoniteLevel < LethalDose):

RescueDamsel()
else:

Evade()

6-18

Copyright © 2015 Pearson Education, Inc.

Control Statements (continued)
• If in Python

if (condition):
statementA

else:
statementB

• In C, C++, C#, and Java
if (condition) statementA; else statementB;

• In Ada
IF condition THEN

statementA;
ELSE

statementB;
END IF;

6-19

Copyright © 2015 Pearson Education, Inc.

Control Statements (continued)

• While in Python
while (condition):

body

• In C, C++, C#, and Java
while (condition)
{ body }

• In Ada
WHILE condition LOOP

body
END LOOP;

6-20

Copyright © 2015 Pearson Education, Inc.

Control Statements (continued)

• Switch statement in C, C++, C#, and Java
switch (variable) {

case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD; }

• In Ada
CASE variable IS

WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE;

6-21

Copyright © 2015 Pearson Education, Inc. 6-22

Figure 6.7 The for loop structure and
its representation in C++, C#, and
Java

Copyright © 2015 Pearson Education, Inc.

Comments

• Explanatory statements within a program
• Helpful when a human reads a program
• Ignored by the compiler

/* This is a comment. */

// This is a comment

6-23

Copyright © 2015 Pearson Education, Inc. 6-24

Procedural Units
• Many terms for this concept:

– Subprogram, subroutine, procedure, method, function

• Unit begins with the function’s header
• Local versus Global Variables
• Formal versus Actual Parameters
• Passing parameters by value versus

reference

Copyright © 2015 Pearson Education, Inc. 6-25

Figure 6.8 The flow of control
involving a function

Copyright © 2015 Pearson Education, Inc. 6-26

Figure 6.9 The function
ProjectPopulation written in the
programming language C

Figure 6.10
Executing the
function Demo
and passing
parameters by
value

Figure 6.11
Executing the
function Demo
and passing
parameters by
reference

Copyright © 2015 Pearson Education, Inc. 6-29

Figure 6.12 The fruitful function
CylinderVolume written in the
programming language C

Copyright © 2015 Pearson Education, Inc. 6-30

Figure 6.13 The translation process

Copyright © 2015 Pearson Education, Inc. 6-31

Figure 6.14 A syntax diagram
of Python’s if-then-else statement

Copyright © 2015 Pearson Education, Inc. 6-32

Figure 6.15 Syntax diagrams describing
the structure of a simple algebraic
expression

Copyright © 2015 Pearson Education, Inc. 6-33

Figure 6.16 The parse tree for the
string x + y * z based on the syntax
diagrams in Figure 6.17

Figure 6.17
Two distinct
parse trees for
the statement
if B1 then if B2
then S1 else S2

Copyright © 2015 Pearson Education, Inc. 6-35

Figure 6.18 An object-oriented
approach to the translation process

Copyright © 2015 Pearson Education, Inc. 6-36

Objects and Classes

• Object: Active program unit containing
both data and procedures

• Class: A template from which objects are
constructed

An object is called an instance of the class.

Copyright © 2015 Pearson Education, Inc. 6-37

Figure 6.19 The structure of a class
describing a laser weapon in a
computer game

Copyright © 2015 Pearson Education, Inc. 6-38

Components of an Object

• Instance Variable: Variable within an
object
– Holds information within the object

• Method: Procedure within an object
– Describes the actions that the object can

perform
• Constructor: Special method used to

initialize a new object when it is first
constructed

Copyright © 2015 Pearson Education, Inc. 6-39

Figure 6.21 A class with a
constructor

Copyright © 2015 Pearson Education, Inc. 6-40

Object Integrity

• Encapsulation: A way of restricting
access to the internal components of an
object
– Private
– Public

Copyright © 2015 Pearson Education, Inc. 6-41

Figure 6.22 Our LaserClass definition
using encapsulation as it would appear in
a Java or C# program

Copyright © 2015 Pearson Education, Inc. 6-42

Additional Object-oriented Concepts

• Inheritance: Allows new classes to be
defined in terms of previously defined
classes

• Polymorphism: Allows method calls to be
interpreted by the object that receives the
call

Copyright © 2015 Pearson Education, Inc. 6-43

Programming Concurrent Activities

• Parallel (or concurrent) processing:
simultaneous execution of multiple
processes
– True concurrent processing requires multiple

CPUs
– Can be simulated using time-sharing with a

single CPU

Copyright © 2015 Pearson Education, Inc. 6-44

Figure 6.23 Spawning threads

Copyright © 2015 Pearson Education, Inc. 6-45

Controlling Access to Data

• Mutual Exclusion: A method for ensuring
that data can be accessed by only one
process at a time

• Monitor: A data item augmented with the
ability to control access to itself

Copyright © 2015 Pearson Education, Inc. 6-46

Declarative Programming

• Resolution: Combining two or more statements
to produce a new statement (that is a logical
consequence of the originals).
– Example: (P OR Q) AND (R OR Q)

resolves to (P OR R)
– Resolvent: A new statement deduced by resolution
– Clause form: A statement whose elementary

components are connected by the Boolean operation
OR

• Unification: Assigning a value to a variable so
that two statements become “compatible.”

Copyright © 2015 Pearson Education, Inc. 6-47

Figure 6.24 Resolving the statements (P
OR Q) and (R OR ¬Q) to produce (P OR R)

Copyright © 2015 Pearson Education, Inc. 6-48

Figure 6.25 Resolving the statements
(P OR Q), (R OR ¬Q), ¬R, and ¬P

Copyright © 2015 Pearson Education, Inc. 6-49

Prolog

• Fact: A Prolog statement establishing a fact
– Consists of a single predicate
– Form: predicateName(arguments).

• Example: parent(bill, mary).

• Rule: A Prolog statement establishing a general
rule
– Form: conclusion :- premise.

• :- means “if”
– Example: wise(X) :- old(X).

– Example: faster(X,Z) :- faster(X,Y), faster(Y,Z).

Copyright © 2015 Pearson Education, Inc. 0-50

Q&A

