
Copyright © 2015 Pearson Education, Inc.

Jianhui Zhang,
Ph.D., Associate Prof.

College of Computer Science and
Technology, Hangzhou Dianzi Univ.

Email: jh_zhang@hdu.edu.cn

Copyright © 2015 Pearson Education, Inc.

Computer Science: An Overview
Twelfth Edition

by
J. Glenn Brookshear

Dennis Brylow

Chapter 8:
Data Abstractions

Copyright © 2015 Pearson Education, Inc.

Chapter 8: Data Abstractions

• 8.1 Data Structure Fundamentals
• 8.2 Implementing Data Structures
• 8.3 A Short Case Study
• 8.4 Customized Data Types
• 8.5 Classes and Objects
• 8.6 Pointers in Machine Language

Copyright © 2015 Pearson Education, Inc.

Basic Data Structures

• Homogeneous array
• Heterogeneous array
• List

– Stack
– Queue

• Tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.1 Lists, stacks, and queues

Copyright © 2015 Pearson Education, Inc.

Terminology for Lists

• List: A collection of data whose entries are
arranged sequentially

• Head: The beginning of the list
• Tail: The end of the list

Copyright © 2015 Pearson Education, Inc.

Terminology for Stacks

• Stack: A list in which entries are removed
and inserted only at the head

• LIFO: Last-in-first-out
• Top: The head of list (stack)
• Bottom or base: The tail of list (stack)
• Pop: To remove the entry at the top
• Push: To insert an entry at the top

Copyright © 2015 Pearson Education, Inc.

Terminology for Queues

• Queue: A list in which entries are removed
at the head and are inserted at the tail

• FIFO: First-in-first-out

Copyright © 2015 Pearson Education, Inc.

Figure 8.2 An example of an
organization chart

Copyright © 2015 Pearson Education, Inc.

Terminology for a Tree

• Tree: A collection of data whose entries
have a hierarchical organization

• Node: An entry in a tree
• Root node: The node at the top
• Terminal or leaf node: A node at the

bottom

Copyright © 2015 Pearson Education, Inc.

Terminology for a Tree (continued)

• Parent: The node immediately above a
specified node

• Child: A node immediately below a
specified node

• Ancestor: Parent, parent of parent, etc.
• Descendent: Child, child of child, etc.
• Siblings: Nodes sharing a common parent

Copyright © 2015 Pearson Education, Inc.

Terminology for a Tree (continued)

• Binary tree: A tree in which every node
has at most two children

• Depth: The number of nodes in longest
path from root to leaf

Copyright © 2015 Pearson Education, Inc.

Figure 8.3 Tree terminology

Copyright © 2015 Pearson Education, Inc.

Additional Concepts

• Static Data Structures: Size and shape of
data structure does not change

• Dynamic Data Structures: Size and shape
of data structure can change

• Pointers: Used to locate data

Copyright © 2015 Pearson Education, Inc.

Figure 8.4 Novels arranged by title
but linked according to authorship

Copyright © 2015 Pearson Education, Inc.

Storing Arrays

• Homogeneous arrays
– Row-major order versus column major

order
– Address polynomial

• Heterogeneous arrays
– Components can be stored one after the other

in a contiguous block
– Components can be stored in separate

locations identified by pointers

Copyright © 2015 Pearson Education, Inc.

Figure 8.5 The array of temperature
readings stored in memory starting
at address x

Copyright © 2015 Pearson Education, Inc.

Figure 8.6 A two-dimensional array with
four rows and five columns stored in row
major order

Copyright © 2015 Pearson Education, Inc.

Figure 8.7 Storing the heterogeneous
array Employee

Copyright © 2015 Pearson Education, Inc.

Storing Lists

• Contiguous list: List stored in a
homogeneous array

• Linked list: List in which each entries are
linked by pointers
– Head pointer: Pointer to first entry in list
– NIL pointer: A “non-pointer” value used to

indicate end of list

Copyright © 2015 Pearson Education, Inc.

Figure 8.8 Names stored in memory
as a contiguous list

Copyright © 2015 Pearson Education, Inc.

Figure 8.9 The structure of a linked
list

Copyright © 2015 Pearson Education, Inc.

Figure 8.10 Deleting an entry from a
linked list

Copyright © 2015 Pearson Education, Inc.

Figure 8.11 Inserting an entry into a
linked list

Copyright © 2015 Pearson Education, Inc.

Storing Stacks and Queues

• Stacks usually stored as contiguous lists
• Queues usually stored as Circular

Queues
– Stored in a contiguous block in which the first

entry is considered to follow the last entry
– Prevents a queue from crawling out of its

allotted storage space

Copyright © 2015 Pearson Education, Inc.

Figure 8.12 A stack in memory

Copyright © 2015 Pearson Education, Inc.

Figure 8.13 A queue implementation with
head and tail pointers

Copyright © 2015 Pearson Education, Inc.

Storing Binary Trees

• Linked structure
– Each node = data cells + two child pointers
– Accessed via a pointer to root node

• Contiguous array structure
– A[1] = root node
– A[2],A[3] = children of A[1]
– A[4],A[5],A[6],A[7] = children of A[2] and A[3]

Copyright © 2015 Pearson Education, Inc.

Figure 8.14 The structure of a node
in a binary tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.15 The conceptual and actual
organization of a binary tree using a
linked storage system

Copyright © 2015 Pearson Education, Inc.

Figure 8.16 A tree stored without
pointers

Copyright © 2015 Pearson Education, Inc.

Figure 8.17 A sparse, unbalanced tree
shown in its conceptual form and as it
would be stored without pointers

Copyright © 2015 Pearson Education, Inc.

Manipulating Data Structures

• Ideally, a data structure should be
manipulated solely by pre-defined
procedures.
– Example: A stack typically needs at least
push and pop procedures.

– The data structure along with these
procedures constitutes a complete abstract
tool.

Copyright © 2015 Pearson Education, Inc.

Figure 8.18 A procedure for printing
a linked list

Copyright © 2015 Pearson Education, Inc.

Case Study

Problem: Construct an abstract tool
consisting of a list of names in alphabetical
order along with the operations search,
print, and insert.

Copyright © 2015 Pearson Education, Inc.

Figure 8.19 The letters A through M
arranged in an ordered tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.20 The binary search as it would
appear if the list were implemented as a
linked binary tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.21 The successively smaller trees
considered by the procedure in Figure
8.18 when searching for the letter J

Copyright © 2015 Pearson Education, Inc.

Figure 8.22 Printing a search tree in
alphabetical order

Copyright © 2015 Pearson Education, Inc.

Figure 8.23 A procedure for printing
the data in a binary tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.24 Inserting the entry
M into the list B, E, G, H, J, K, N, P stored
as a tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.25 A procedure for inserting a
new entry in a list stored as a binary tree

Copyright © 2015 Pearson Education, Inc.

User-defined Data Type

• A template for a heterogeneous structure
• Example:
define type EmployeeType to be

{char Name[25];
int Age;
real SkillRating;
}

Copyright © 2015 Pearson Education, Inc.

Abstract Data Type

• A user-defined data type with procedures for access and
manipulation

• Example:
define type StackType to be
{int StackEntries[20];
int StackPointer = 0;
procedure push(value)

{StackEntries[StackPointer] ← value;
StackPointer ¬ StackPointer + 1;

}
procedure pop . . .

}

Copyright © 2015 Pearson Education, Inc.

Class

• An abstract data type with extra features
– Characteristics can be inherited
– Contents can be encapsulated
– Constructor methods to initialize new objects

Copyright © 2015 Pearson Education, Inc.

Figure 8.26 A stack of integers
implemented in Java and C#

Copyright © 2015 Pearson Education, Inc.

Pointers in Machine Language

• Immediate addressing: Instruction
contains the data to be accessed

• Direct addressing: Instruction contains
the address of the data to be accessed

• Indirect addressing: Instruction contains
the location of the address of the data to
be accessed

Copyright © 2015 Pearson Education, Inc.

Figure 8.27 Our first attempt at expanding the
machine language in Appendix C to take
advantage of pointers

Copyright © 2015 Pearson Education, Inc.

Figure 8.28 Loading a register from a
memory cell that is located by means of a
pointer stored in a register

Copyright © 2015 Pearson Education, Inc. 0-50

Q&A

