Computer Science Guidance

Jianhui Zhang,

Ph.D., Associate Prof.

College of Computer Science and
Technology, Hangzhou Dianzi Univ.

Email: jh_zhang@hdu.edu.cn

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.

Chapter 8:
Data Abstractions

Computer Science: An Overview
Twelfth Edition

by
J. Glenn Brookshear
Dennis Brylow

Addison-Wesley
is an imprint of

Copyright © 2015 Pearson Education, Inc.
PEARSON

8.1 Data Structure Fundamentals

8.2 Implementing Data Structures
8.3 A Short Case Study

8.4 Customized Data Types

8.5 Classes and Objects

8.6 Pointers in Machine Language

Copyright © 2015 Pearson Education, Inc.

Homogeneous dlray
Heterogeneous array
List

Stack

Queue

Tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.1 Lists, stacks, and queues

il Head —

| Maurice — Tail |

a. A list of names b. A stack of books

Copyright © 2015 Pearson Education, Inc.

_—Top

_ Bob
Devon

™~ Bottom

Queue
| ' | T’"ﬁT
Tail/ \Head

c. A queue of people

List: A collection of data whose entries are
arranged sequentially

Head: The beginning of the list
Tail: The end of the list

Copyright © 2015 Pearson Education, Inc.

Stack: A list in which entries are removed
and inserted only at the head

LIFO: Last-in-first-out

Top: The head of list (stack)

Bottom or base: The tall of list (stack)
Pop: To remove the entry at the top
Push: To insert an entry at the top

Copyright © 2015 Pearson Education, Inc.

Queue: A list in which entries are removed
at the head and are inserted at the talil

FIFO: First-in-first-out

Copyright © 2015 Pearson Education, Inc.

Figure 8.2 An example of an
organization chart

President

i S

Vice-President Vice-President Vice-President
of Sales of Finance of Services
Regional Regional Regional Regional Regional
Sales Sales Sales Service Service
Manager Manager Manager Manager Manager

Copyright © 2015 Pearson Education, Inc.

Tree: A collection of data whose entries
have a hierarchical organization

Node: An entry in a tree
Root node: The node at the top

Terminal or leaf node: A node at the
bottom

Copyright © 2015 Pearson Education, Inc.

Parent: The node immediately above a
specified node

Child: A node immediately below a
specified node

Ancestor: Parent, parent of parent, etc.
Descendent: Child, child of child, etc.
Siblings: Nodes sharing a common parent

Copyright © 2015 Pearson Education, Inc.

Binary tree: A tree in which every node
has at most two children

Depth: The number of nodes in longest
path from root to leaf

Copyright © 2015 Pearson Education, Inc.

Root node

M Terminal (or leaf) nodes

Copyright © 2015 Pearson Education, Inc.

Static Data Structures: Size and shape of
data structure does not change

Dynamic Data Structures: Size and shape
of data structure can change

Pointers: Used to locate data

Copyright © 2015 Pearson Education, Inc.

Figure 8.4 Novels arranged by title
but linked according to authorship

/| /|
I [

A Farewell to Arms For Whom the Bell Tolls The Sun Also Rises
by Ernest Hemingway by Ernest Hemingway by Ernest Hemingway
Pointer Pointer Pointer

/| f /1 I
i

| 11 /
L \ J N J J

Copyright © 2015 Pearson Education, Inc.

Homogeneous arrays

Row-major order versus column major
order

Address polynomial

Heterogeneous arrays

Components can be stored one after the other
in a contiguous block

Components can be stored in separate
locations identified by pointers

Copyright © 2015 Pearson Education, Inc.

Figure 8.5 1he array ot temperature
readings stored in memory starting
at address x

Addresses—[X X+1 X+2 x+3 x+4 x+5 x+6

anuny———{:i
cells

|
Readings [1] ‘

Readings [2]

Readings [3]

Readings [4]

Copyright © 2015 Pearson Education, Inc.

Figure 8.6 A two-dimensional array with
four rows and five columns stored in row
major order

Conceptual array

I
: Flow|1 :
| Row 2 |
| H:ow;3|
ow
Machine’s memory |7
I | I |l I
| L |
| Row4 | | l&
1 l] 1] | l 1] | | 1 L

| L L L |
{I |H|ow1| I Row 2 1| IRPW|3!

Entry from 4th column in Row 3

Copyright © 2015 Pearson Education, Inc.

Figure 8.7 Storing the heterogeneous
array Employee

Emplfyee
I |
Employee.Name Employee.Age Employee.SkillRating
N - —]— N\
| / N,
Addresses: x X+ 25 X+ 26

a. Array stored in a contiguous block

| _— Employee.Name

Pointers — > Employee.Age

+~— . _
Employee.Ski1llRating

b. Array components stored in separate locations

Copyright © 2015 Pearson Education, Inc.

Contiguous list: List stored in a
homogeneous array

Linked list: List in which each entries are
linked by pointers

Head pointer: Pointer to first entry in list

NIL pointer: A "non-pointer” value used to
indicate end of list

Copyright © 2015 Pearson Education, Inc.

Figure 8.8 Names stored in memory
as a contiguous list

Contiguous block of memory cells
I

//
I . 1
//
|| Fi4
First name Second name Last name
stored here stored here stored here

Copyright © 2015 Pearson Education, Inc.

Figure 8.9 The structure of a linked
list

Head pointer

Name Pointer

|
Name Pointer f J

(Name Pointer

NIL

Copyright © 2015 Pearson Education, Inc.

Figure 8.10 Deleting an entry from a
linked list

Head pointer

Deleted entry
Name Pointer
Old pointer
. > |
v Name Pointer J
\ fName Pointer
b
New pointer NIL

Copyright © 2015 Pearson Education, Inc.

Figure 8.11 Inserting an entry into a

linked list

Head pointer

New pointer

v Name Pointer

Copyright © 2015 Pearson Education, Inc.

New entry

Name Pointer

Old pointer

New pointer

41’ Name Pointer

.. ‘, |

)

fl\lame Pointer

NIL

Stacks usually stored as contiguous lists

Queues usually stored as Circular
Queues

Stored in a contiguous block in which the first
entry is considered to follow the last entry

Prevents a queue from crawling out of its
allotted storage space

Copyright © 2015 Pearson Education, Inc.

Figure 8.12 A stack in memory

Stack’s Reserved block of memory cells
I

base \I |

T T T 1 T T T
Stack entries l \

Space for growth

Stack pointer

Copyright © 2015 Pearson Education, Inc.

Figure 8.13 A queue implementation with
head and tail pointers

MW M
S e
Head I Head N B
pointer pointer
C
Tail I Tail >
pointer pointer
AW AW
a. Empty queue b. After inserting entries A, B, and C
WA M
B
Head J Head >
pointer | | C pointer C
D D
Tail Tail
pointer g pointer | N E
AWA AW
c. After removing A and d. After removing B and
inserting D inserting E

Copyright © 2015 Fearson Eaucation, Inc.

Linked structure
Each node = data cells + two child pointers

Accessed via a pointer to root node

Contiguous array structure

A[1] = root node

A[2],A[3] = children of A[1]
A[4],A[5],A[6],A[7] = children of A[2] and A[3]

Copyright © 2015 Pearson Education, Inc.

Figure 8.14 The structure of a node
In a binary tree

Cells containing Left child Right child
the data pointer pointer

Copyright © 2015 Pearson Education, Inc.

Figure 8.15 The conceptual and actual

organization of a binary tree using a
linked storage system

Conceptual tree

N

D/B\ E

Actual storage organization

N

F

Root pointer ()
NN | | C NIL
B | | D NIL | NIL
t »| E NIL | NIL

Copyright © 2015 Pearson Education, Inc.

NIL

NIL

Figure 8.16 A tree stored without
pointers

B/A\C
NN

Actual storage organization

1 2 3 4 5 6 7
A B C D E F
I / || |
Root node / /
Nodes in 2nd Nodes in 3rd
level of tree level of tree

Copyright © 2015 Pearson Education, Inc.

Figure 8.17 A sparse, unbalanced tree
shown in its conceptual form and as it
would be stored without pointers

Conceptual tree

Actual storage organization

e

AN

D

N

E

1 2 3 4 5 8 9 10 11 12 13 14 15

A B C E
/ | [[y
2nd level 3rd level 4th level

root

Copyright © 2015 Pearson Education, Inc.

|deally, a data structure should be
manipulated solely by pre-defined
procedures.

Example: A stack typically needs at least
push and pop procedures.

The data structure along with these
procedures constitutes a complete abstract

tool.

Copyright © 2015 Pearson Education, Inc.

Figure 8.18 A procedure for printing
a linked list

procedure PrintList (List)
CurrentPointer « head pointer of List.
while (CurrentPointer is not NIL) do
(Print the name in the entry pointed to by CurrentPointer;
Observe the value in the pointer cell of the List entry
pointed to by CurrentPointer, and reassign CurrentPointer
to be that value.)

Copyright © 2015 Pearson Education, Inc.

Problem: Construct an abstract tool
consisting of a list of names in alphabetical
order along with the operations search,
print, and insert.

Copyright © 2015 Pearson Education, Inc.

Figure 8.19 The letters A through M
arranged In an ordered tree

D/G\K
N N

SN/ N/

Figure 8.20 The binary search as it would
appear if the list were implemented as a
linked binary tree

procedure Search(Tree, TargetValue)

if (root pointer of Tree = NIL)
then
(declare the search a failure)
else
(execute the block of instructions below that is
associated with the appropriate case)
case 1: TargetValue = value of root node
(Report that the search succeeded)
case 2: TargetValue < value of root node
(Apply the procedure Search to see if
TargetValue is in the subtree identified
by the root’s left child pointer and
report the result of that search)
case 3: TargetValue > value of root node
(Apply the procedure Search to see if
TargetValue is in the subtree identified
by the root’s right child pointer and
report the result of that search)
) end if

Copyright © 2015 Pearson Education, Inc.

Figure 8.21 The successively smaller trees
considered by the procedure in Figure
8.18 when searching for the letter J

N

E

S
A/ \C

Copyright © 2015 Pearson Education, Inc.

Figure 8.22 Printing a search tree In
alphabetical order

/ F \
/D\ /H \
AN |0/
A © I
| |
1. Print the left 2. Print 3. Print the
branch in the root right branch in

alphabetical node alphabetical order
order

| NN |
A, B C, D EE F G H I J

Copyright © 2015 Pearson Education, Inc.

Figure 8.23 A procedure for printing
the data in a binary tree

procedure PrintTree (Tree)

if (Tree is not empty)
then (Apply the procedure PrintTree to the tree that
appears as the left branch in Tree;
Print the root node of Tree;
Apply the procedure PrintTree to the tree that
appears as the right branch in Tree)

Copyright © 2015 Pearson Education, Inc.

Figure 8.24 Inserting the entry
M into the list B, E, G, H, J, K, N, P stored
as a tree

a. Search for the new entry until its absence is detected

b. This is the position in which the new entry should be attached
/H\
E /N \
B G /K\ P
J M

Copyright © 2015 Pearson Educal

Figure 8.25 A procedure for inserting a
new entry In a list stored as a binary tree

procedure Insert(Tree, NewValue)

if (root pointer of Tree = NIL)
(set the root pointer to point to a new leaf
containing NewValue)
else (execute the block of instructions below that is
associated with the appropriate case)
case 1: NewValue = value of root node
(Do nothing)
case 2: NewValue < value of root node
(if (left child pointer of root node = NIL)
then (set that pointer to point to a new
leaf node containing NewValue)
else (apply the procedure Insert to insert
NewValue into the subtree identified

by the left child pointer)
case 3: NewValue > value of root node
(if (right child pointer of root node = NIL)
then (set that pointer to point to a new
leaf node containing NewValue)

else (apply the procedure Insert to insert
NewValue into the subtree identified

by the right child pointer)
) end if

Copyright © 2015 Pearson Education, Inc.

A template for a heterogeneous structure

Example:

define type EmployeeType to be
{char Name[25];

int Age;

real SkillRating;

}

Copyright © 2015 Pearson Education, Inc.

A user-defined data type with procedures for access and
manipulation

Example:
define type StackType to be
{int StackEntries[20];
int StackPointer = 0;
procedure push (value)
{StackEntries[StackPointer] « wvalue;
StackPointer - StackPointer + 1;

}

procedure pop

}

Copyright © 2015 Pearson Education, Inc.

An abstract data type with extra features
Characteristics can be inherited
Contents can be encapsulated
Constructor methods to initialize new objects

Copyright © 2015 Pearson Education, Inc.

Figure 8.26 A stack of integers
implemented in Java and C#

class StackOfIntegers
{private int[] StackEntries

= new int[20];
private int StackPointer = 0;

public void push (int NewEntry)

{if (StackPointer < 20)
StackEntries[StackPointer++] = NewEntry;

}

public int pop ()
{if (StackPointer > 0) return StackEntries[--StackPointer];
else return O;

}
}

Copyright © 2015 Pearson Education, Inc.

Immediate addressing: Instruction
contains the data to be accessed

Direct addressing: Instruction contains
the address of the data to be accessed

Indirect addressing: Instruction contains
the location of the address of the data to
be accessed

Copyright © 2015 Pearson Education, Inc.

Figure 8.27 Our first attempt at expanding the
machine language in Appendix C to take
advantage of pointers

Address in
instruction .

CPU tells where Main memory
pointer Is Pointer stored

.. stored in
Register 5 Instructionin memory at address AA

instruction AA
Data register ' Pointer indicates
A J/location of Data

I N e

/ g

Data transfered
to register during
execute phase of
machine cycle

Copyright © 2015 Pearson Education, Inc.

Figure 8.28 Loading a register from a
memory cell that is located by means of a
pointer stored in a register

CPU Main memory
Instruction

Instruction in indicates
instruction which Data transfered
Register 4 register register to register during
contains execute phase of
< i pointer machine cycle
D504 Bus

Register 5

___________________ Data

Data |€¢---------><--------- 1

Pointer indicates
location of Data

Copyright © 2015 Pearson Education, Inc.

&A

Copyright © 2015 Pearson Education, Inc.
0-50

