Computer Science Guidance

Jianhui Zhang,

Ph.D., Associate Prof.

College of Computer Science and Technology, Hangzhou Dianzi Univ.

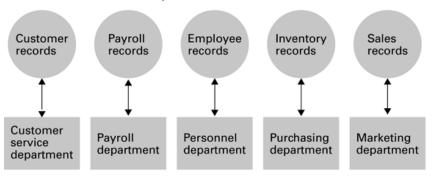
Email: jh_zhang@hdu.edu.cn

Chapter 9: Database Systems

Computer Science: An Overview Twelfth Edition

J. Glenn Brookshear Dennis Brylow

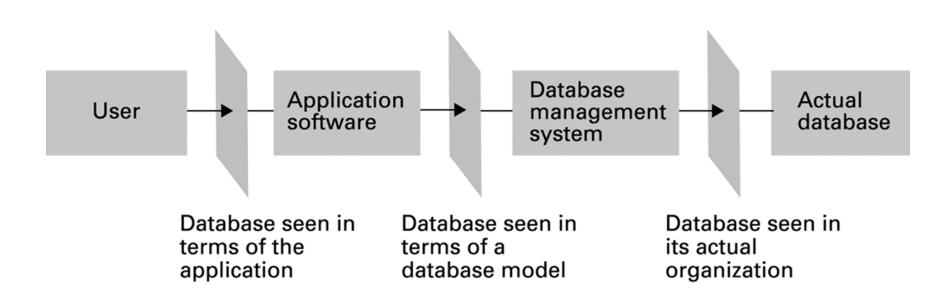
Chapter 9: Database Systems


- 9.1 Database Fundamentals
- 9.2 The Relational Model
- 9.3 Object-Oriented Databases
- 9.4 Maintaining Database Integrity
- 9.5 Traditional File Structures
- 9.6 Data Mining
- 9.7 Social Impact of Database Technology

Database

A collection of data that is multidimensional in the sense that internal links between its entries make the information accessible from a variety of perspectives

Figure 9.1 A file versus a database organization


a. File-oriented information system

b. Database-oriented information system

Figure 9.2 The conceptual layers of a database implementation

Schemas

- Schema: A description of the structure of an entire database, used by database software to maintain the database
- Subschema: A description of only that portion of the database pertinent to a particular user's needs, used to prevent sensitive data from being accessed by unauthorized personnel

Database Management Systems

- Database Management System (DBMS): A software layer that manipulates a database in response to requests from applications
- Distributed Database: A database stored on multiple machines
 - DBMS will mask this organizational detail from its users
- Data independence: The ability to change the organization of a database without changing the application software that uses it

Database Models

- Database model: A conceptual view of a database
 - Relational database model
 - Object-oriented database model

Relational Database Model

- Relation: A rectangular table
 - Attribute: A column in the table
 - Tuple: A row in the table

Figure 9.3 A relation containing employee information

Empl Id	Name	Address	SSN
25X15 34Y70 23Y34	Joe E. Baker Cheryl H. Clark G. Jerry Smith	33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr.	111223333 999009999 111005555
•		•	•
•	•	•	•
•	•	•	•

Relational Design

- Avoid multiple concepts within one relation
 - Can lead to redundant data
 - Deleting a tuple could also delete necessary but unrelated information

Improving a Relational Design

- Decomposition: Dividing the columns of a relation into two or more relations, duplicating those columns necessary to maintain relationships
 - Lossless or nonloss decomposition: A "correct" decomposition that does not lose any information

Figure 9.4 A relation containing redundancy

Baker St.	Empl Id	Name	Empl Id	Address	lame Address SSN	Job Id	Job Title S	Skill Code	e Dept	Start Date	Term Date
34Y70 Cheryl H. 563 Downtown 999009999 F5 Floor FM3 Sales 10-1-2007	25X15		25X15			3 F5		FM3	Sales	9-1-2007	9-30-2008
	25X15		25X15			3 D7		K2	Sales	10-1-2008	*
Tidinger Tidinger	34Y70	Cheryl H. Clark	34Y70	563 Downtown Ave.	·	9 F5	Floor manager	FM3	Sales	10-1-2007	*
23Y34 G. Jerry Smith Dr. 1555 Circle Dr. 111005555 S25X Secretary T5 Personnel 3-1-1999 4-30-	23Y34	,	23Y34		,	5 S25X	Secretary	T5	Personnel	3-1-1999	4-30-2006
23Y34 G. Jerry Smith Dr. 1555 Circle 111005555 S26Z Secretary T6 Accounting 5-1-2006	23Y34	,	23Y34		,	5 S26Z	Secretary	Т6	Accounting	5-1-2006	*
	•	•	•	•	• • •	•	•	•	•	•	•
	•	•	•	·	• • •	•	•	•	•	•	•

Figure 9.5 An employee database consisting of three relations

EMPLOYEE relation

Empl ld	Name	Address	SSN
25X15	Joe E. Baker	33 Nowhere St.	111223333
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555

JOB relation

Job Id	JobTitle	Skill Code	Dept
S25X S26Z F5	Secretary Secretary Floor manager	T5 T6 FM3	Personnel Accounting Sales
•		•	•
•	•	•	•
•	•	•	•

ASSIGNMENT relation

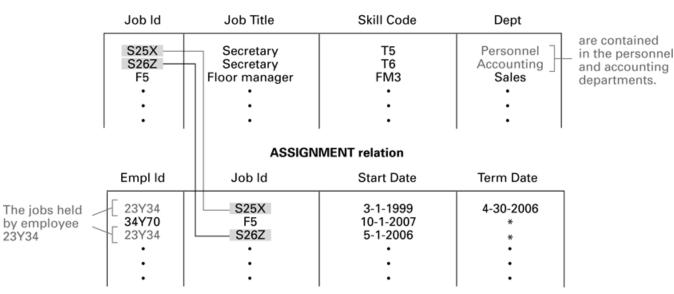
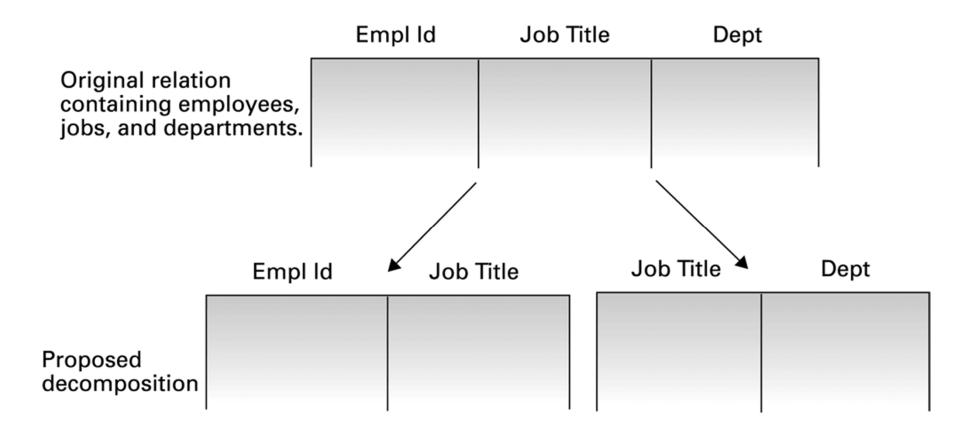
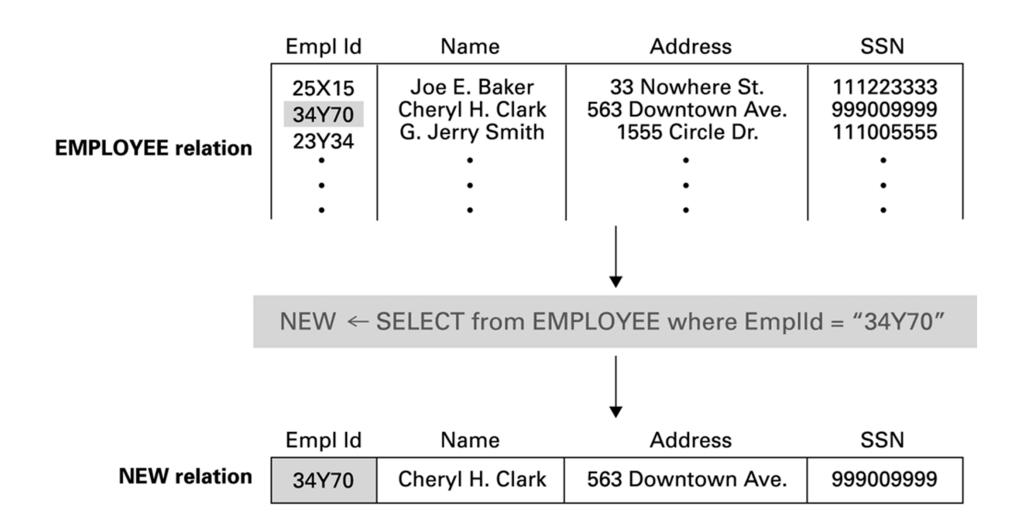

Empl Id	Job Id	Start Date	Term Date
23Y34 34Y70 23Y34	S25X F5 S26Z	3-1-1999 10-1-2007 5-1-2006	4-30-2006 * *
•	•	•	•
•	•	•	•
•	•	•	•

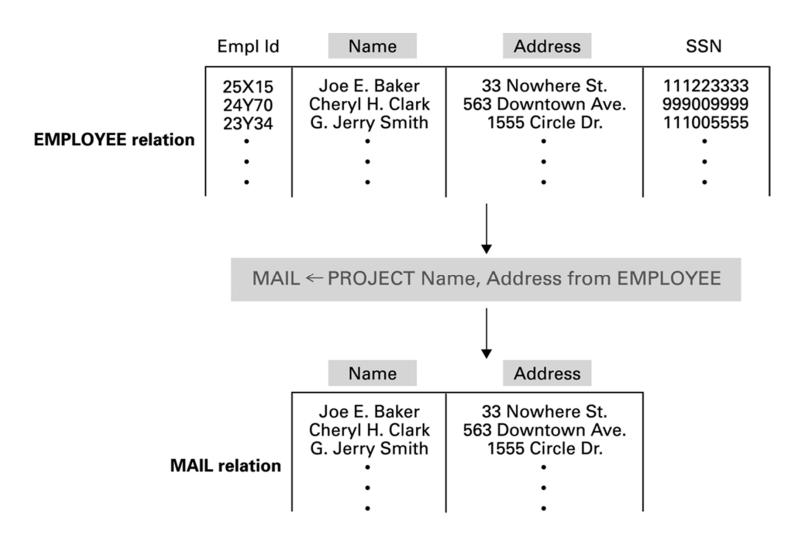
Figure 9.6 Finding the departments in which employee 23Y34 has worked


EMPLOYEE relation

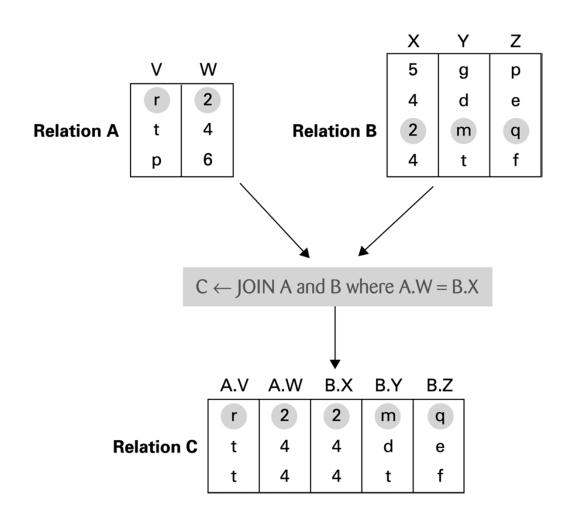
Empl Id	Name	Address	SSN
25X15 34Y70 23Y34	Joe E. Baker Cheryl H. Clark G. Jerry Smith	33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr.	111223333 999009999 111005555
•	•		•
•	•		•
•		•	•

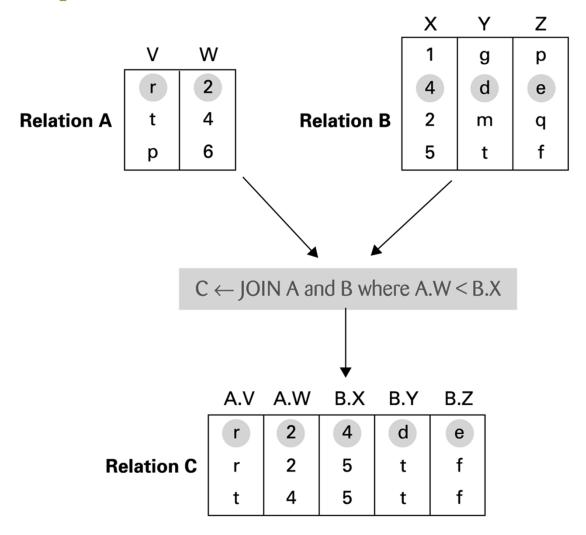
JOB relation


Figure 9.7 A relation and a proposed decomposition


Relational Operations

- Select: Choose rows
- Project: Choose columns
- Join: Assemble information from two or more relations


Figure 9.8 The SELECT operation


Figure 9.9 The PROJECT operation

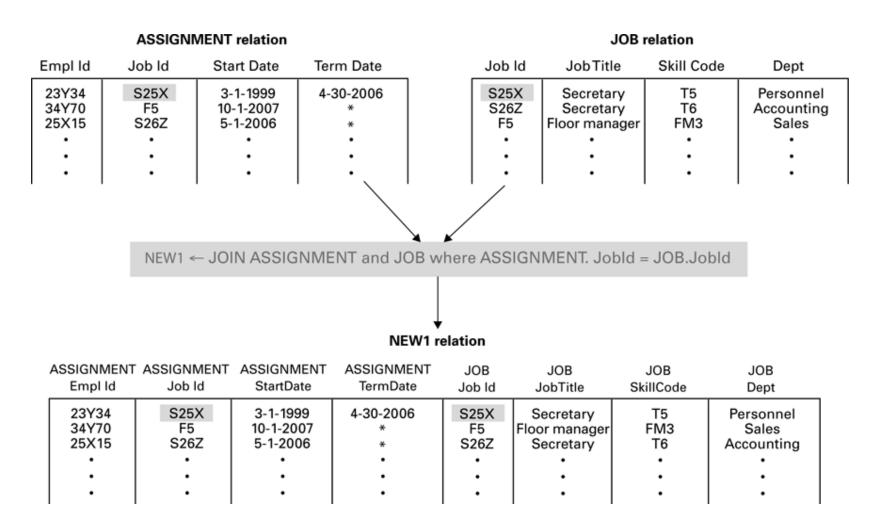

Figure 9.10 The JOIN operation

Figure 9.11 Another example of the JOIN operation

Figure 9.12 An application of the JOIN operation

Structured Query Language (SQL)

- Operations to manipulate tuples
 - insert
 - update
 - delete
 - select

SQL Examples

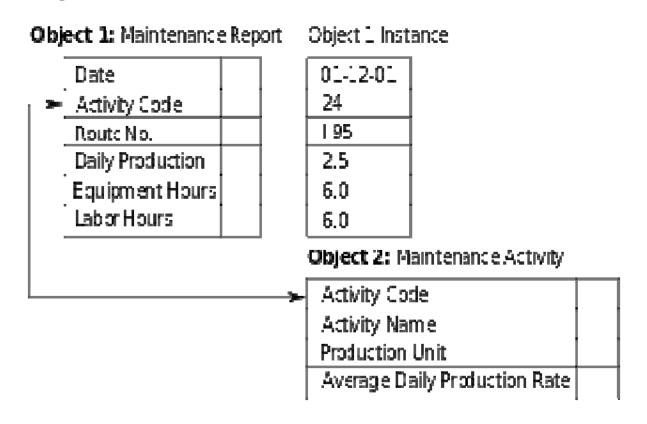
```
    SELECT EmplId, Dept
        FROM Assignment, Job
        WHERE Assignment.JobId = Job.JobId
        AND Assignment.TermData = '*';
```

```
• INSERT INTO Employee
VALUES ('43212', 'Sue A. Burt',

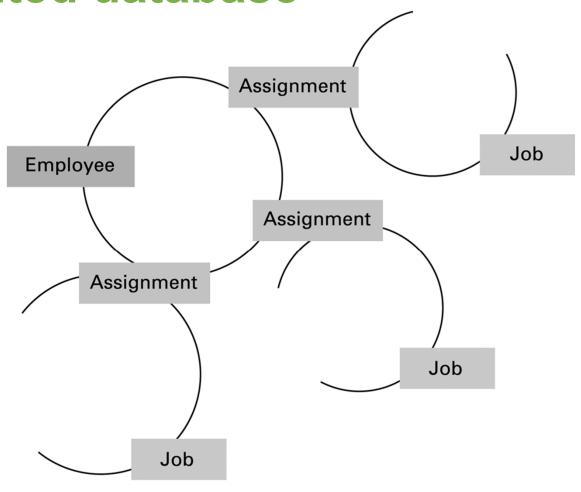
'33 Fair St.', '444661111');
```

SQL Examples (continued)

DELETE FROM Employee
 WHERE Name = 'G. Jerry Smith';


```
• UPDATE Employee
SET Address = '1812 Napoleon Ave.'
WHERE Name = 'Joe E. Baker';
```

Object-oriented Databases


- Object-oriented Database: A database constructed by applying the object-oriented paradigm
 - Each entity stored as a persistent object
 - Relationships indicated by links between objects
 - DBMS maintains inter-object links

Object-oriented Databases

Object-Oriented Model

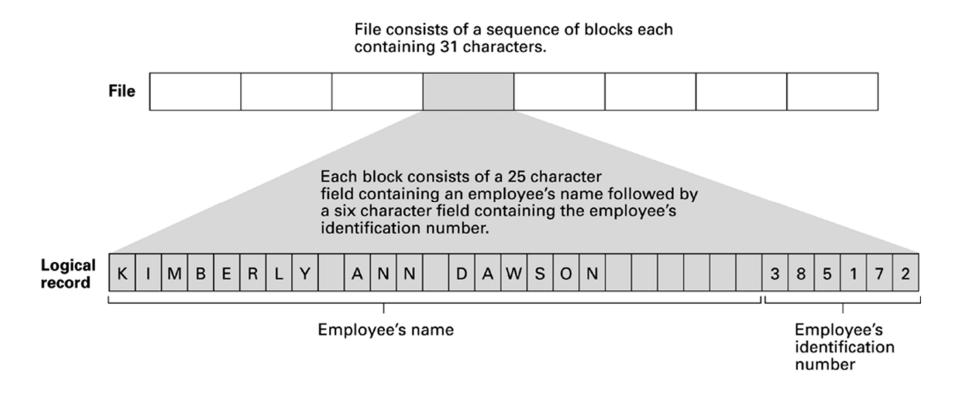
Figure 9.13 The associations between objects in an object-oriented database

Advantages of Object-oriented Databases

- Matches design paradigm of objectoriented applications
- Intelligence can be built into attribute handlers
- Can handle exotic data types
 - Example: multimedia

Maintaining Database Integrity

- Transaction: A sequence of operations that must all happen together
 - Example: transferring money between bank accounts
- Transaction log: A non-volatile record of each transaction's activities, built before the transaction is allowed to execute
 - Commit point: The point at which a transaction has been recorded in the log
 - Roll-back: The process of undoing a transaction


Maintaining database integrity (continued)

- Simultaneous access problems
 - Incorrect summary problem
 - Lost update problem
- Locking = preventing others from accessing data being used by a transaction
 - Shared lock: used when reading data
 - Exclusive lock: used when altering data

Sequential Files

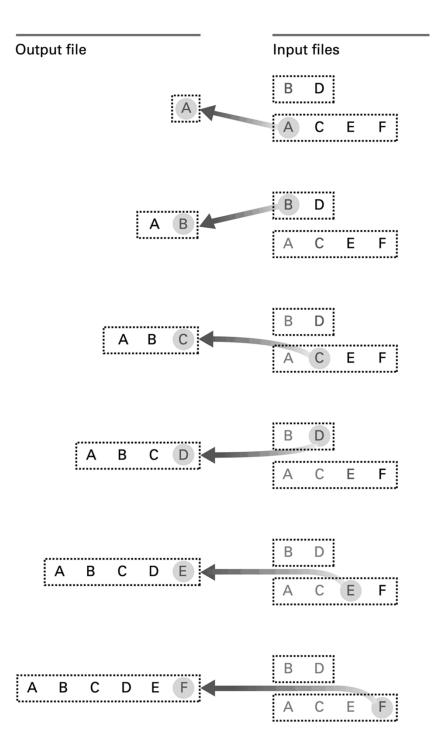
- Sequential file: A file whose contents can only be read in order
 - Reader must be able to detect end-of-file (EOF)
 - Data can be stored in logical records, sorted by a key field
 - Greatly increases the speed of batch updates

Figure 9.14 The structure of a simple employee file implemented as a text file

Figure 9.15 A function for merging two sequential files

```
def MergeFiles (InputFileA, InputFileB, OutputFile):
   if (both input files at EOF):
      Stop, with OutputFile empty
   if (InputFileA not at EOF):
      Declare its first record to be its current record
   if (InputFileB not at EOF):
      Declare its first record to be its current record
   while (neither input file at EOF):
      Put the current record with the "smaller" key field value in OutputFile
      if (that current record is the last record in its corresponding input file):
            Declare that input file to be at EOF
      else:
            Declare the next record in that input file to be the file's current record
```

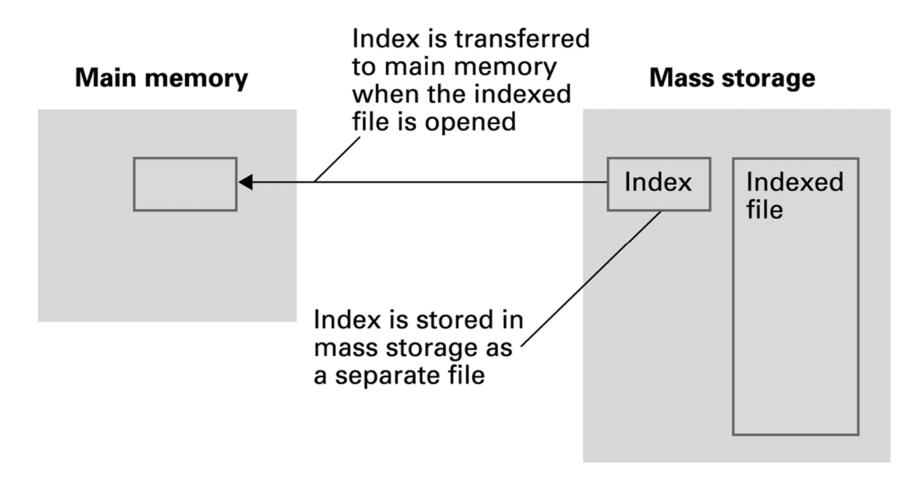
Starting with the current record in the input file that is not at EOF,


copy the remaining records to OutputFile

Copyright © 2015 Pearson Education, Inc.

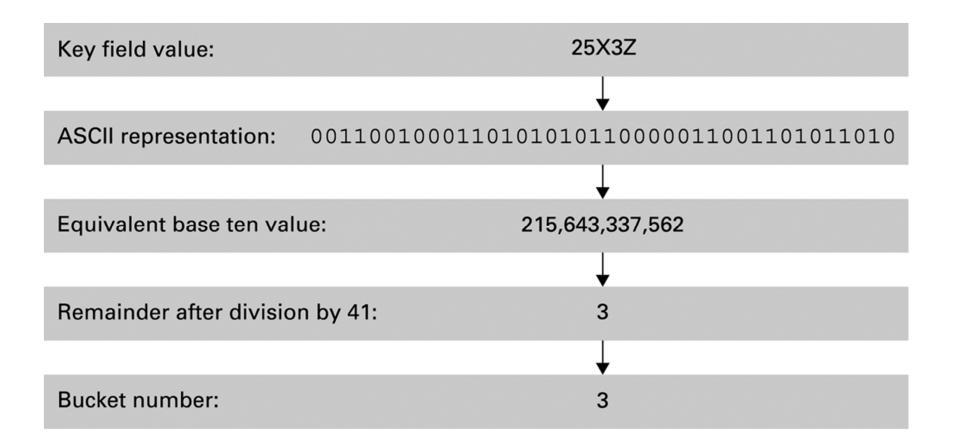
Applying the merge algorithm (Letters are used to represent entire records.

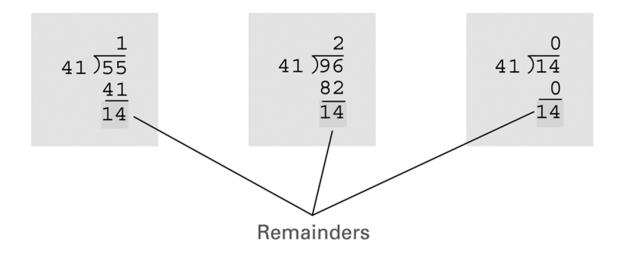
The particular letter indicates the value of the record's


key field.)

Indexed Files

 Index: A list of key values and the location of their associated records


Figure 9.17 Opening an indexed file


Hashing

- Each record has a key field
- The storage space is divided into buckets
- A hash function computes a bucket number for each key value
- Each record is stored in the bucket corresponding to the hash of its key

Figure 9.18 Hashing the key field value 25X3Z to one of 41 buckets

Figure 9.19 The rudiments of a hashing system

When divided by 41, the key field values of 14, 55, and 96 each produce a remainder of 14. Thus these records are stored in bucket 14.

Collisions in Hashing

- Collision: The case of two keys hashing to the same bucket
 - Major problem when table is over 75% full
 - Solution: increase number of buckets and rehash all data

Data Mining

- Data Mining: The area of computer science that deals with discovering patterns in collections of data
- Data warehouse: A static data collection to be mined
 - Data cube: Data presented from many perspectives to enable mining

Data Mining Strategies

- Class description
- Class discrimination
- Cluster analysis
- Association analysis
- Outlier analysis
- Sequential pattern analysis

Social Impact of Database Technology

Problems

- Massive amounts of personal data are being collected
 - Often without knowledge or meaningful consent of affected people
- Data merging produces new, more invasive information
- Errors are widely disseminated and hard to correct

Remedies

- Existing legal remedies often difficult to apply
- Negative publicity may be more effective

Q&A