
Computer Networks 214 (2022) 109164

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Utility Maximization for Splittable Task Offloading in IoT Edge Network
Jiacheng Wang a,1, Jianhui Zhang a,1, Liming Liu a, Xuzhao Zheng b, Hanxiang Wang a,
Zhigang Gao a,∗

a School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
b Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou, 310052, China

A R T I C L E I N F O

Keywords:
Internet of Things
Edge Networks
Time-Expanded Graph
Utility Maximization
Task Offloading

A B S T R A C T

This paper comprehensively investigates spatio-temporal dynamics for task offloading in the Internet of Things
(IoT) Edge Network (iTEN) in order to maximize utility. Different from the previous works in the literature that
only consider partially dynamic factors, this paper takes into account the time-varying wireless link quality,
communication power, wireless interference on task offloading, and the spatiotemporal dynamics of energy
harvested by terminals and their charging efficiency. Our goal is to maximize utility during the task offloading
by considering the above-mentioned factors, which are relatively complex but closer to reality. This paper
designs the Time-Expanded Graph (TEG) to transfer network dynamics and wireless interference into some
static weight in the graph so as to devise the algorithm easily. This paper firstly devises the Single Terminal
(ST) utility maximization algorithm on the basis of TEG when there is only one terminal. In the case of multiple
terminals, it is very complicated to directly solve the utility maximization of the task offloading. This paper
adopts the framework of Garg and Könemann and devises a multi-terminal algorithm (MT) to maximize the
total utility of all terminals. MT is a fast approximate algorithm and its approximate ratio is 1-3𝜍, where
0 < 𝜍 < 1∕3 is a positive small constant. The comprehensive experiments are conducted to illustrate that our
algorithm significantly improves the overall utility compared to the three basic algorithms.
1. Introduction

With the rapid proliferation of the IoT, the IoT terminals and their
produced data grows dramatically in recent years [1]. However, due
to the limitation of the computation and storage capabilities of the
IoT terminals, they are inadequate for computation-intensive tasks [2].
Furthermore, IoT terminals are limited by their own power supply [3,
4]. Fortunately, the fast development of wireless networks has enabled
more and more IoT terminals to connect to the Internet and share
their information. IoT terminals move some computation tasks to the
specified devices, which have relatively rich computation and storage
capability and sufficient energy supply [5,6]. This way of migrating
tasks is often described as computation offloading [7].

In recent years, a growing number of works have been contributed
to computation offloading [1,8,9]. Cloud computing emerges in late
2007, which provides flexible computation services by remote cloud [10,
11]. The Cloud integrates abundant computation and storage resources
in a specific place and offers diversified services to the IoT termi-
nals [12]. Nevertheless, the number of IoT terminals and their produced
tasks are growing rapidly, which brings tremendous pressure to the

∗ Corresponding author.
E-mail addresses: jcwang@hdu.edu.cn (J. Wang), jh_zhang@hdu.edu.cn (J. Zhang), limingliu@hdu.edu.cn (L. Liu), zhengxuzhao66@163.com (X. Zheng),

hx_wang@hdu.edu.cn (H. Wang), gaozhigang@hdu.edu.cn (Z. Gao).
1 Equal contribution and shared co-first authorship.

computation load of the Cloud [13,14]. On the other hand, the location
of the cloud is generally far away from the IoT terminals, so network
transmission would cause high network delay and energy consump-
tion [15]. It is not feasible for time-sensitive tasks especially, such
as real-time control in the industrial IoT [16–18]. To cope with the
constrained high network latency and energy consumption of remote
cloud, Mobile Edge Computing (MEC) has been proposed as a feasible
paradigm [19,20]. In MEC, edge servers at the edge of the wireless
networks receive and complete tasks from the IoT terminals. They
have the advantage of being geographically close to IoT terminals and
thus highlight its advantages in latency and bandwidth to effectively
improve the reliability and quality of services [21–23]. This paper
adopts a three-tier collaboration architecture called iTEN, which is
composed of IoT terminals, edge servers, and the cloud. The previous
works only consider part of the network dynamic properties such as
power or link quality during task offloading. However, we need to
take extra comprehensive factors into account to make it closer to
reality [24,25]. This paper considers not only the network dynamic
properties but also the time variability of the IoT terminal energy
vailable online 11 July 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109164
Received 22 December 2021; Received in revised form 27 June 2022; Accepted 4 J
uly 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:jcwang@hdu.edu.cn
mailto:jh_zhang@hdu.edu.cn
mailto:limingliu@hdu.edu.cn
mailto:zhengxuzhao66@163.com
mailto:hx_wang@hdu.edu.cn
mailto:gaozhigang@hdu.edu.cn
https://doi.org/10.1016/j.comnet.2022.109164
https://doi.org/10.1016/j.comnet.2022.109164
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109164&domain=pdf

Computer Networks 214 (2022) 109164J. Wang et al.
collection and the imperfect charging efficiency. Integrating these
factors, this problem becomes more complicated but more realistic.
This paper further considers the problem of wireless interference during
multi-terminal offloading and how to effectively characterize the above
factors. These factors bring great challenges to the task offloading of IoT
terminals.

This paper first comprehensively considers the dynamic characteris-
tics of the network, the dynamic energy collection of the IoT terminals
and their imperfect charging efficiency, as well as the interference
factor of wireless transmission, and then try to characterize the above
dynamic factors in a suitable way. To maximize the utility of task
offloading under constraints of wireless interference is an NP-hard
problem, and it is quite challenging to solve directly. This paper devises
Time-Expanded Graph (TEG), which is a novel and fascinating way to
handle the above-mentioned problem. Finally, the paper studies how to
maximize the total utility of task offloading in two cases. Specifically,
this paper first studies the case of a single terminal and designs a Single
Terminal (ST) algorithm based on TEG. Secondly, each terminal has a
certain amount of tasks to offload in multi-terminal cases. This paper
adopts Garg and Könemann’s method [26] to handle its dual problem
rather than the primal one, which allows us to design an approximation
algorithm: Multiple Terminal (MT) algorithm.

Contributions. This paper considers the task offloading from the
IoT terminals to the edge servers or cloud by introducing TEG to devise
an interesting method for the utility maximization problem and analyze
it theoretically. The main contributions are listed below:

1. This paper considers network dynamics and wireless interference
factors comprehensively, which are much more complicated
than the previous one which only considers partial network
dynamics. This paper introduces TEG to dynamically represent
network dynamics and wireless interference, which simplifies
the problem and enables us to have a good perspective to handle
the issue.

2. On the basis of TEG, this paper proposes ST algorithms to solve
the path selection of task offloading of a single IoT terminal,
and expounds on the feasibility of the algorithm in the iTEN
utility maximization. For scenarios where multiple IoT terminals
offload tasks simultaneously, this paper simplifies the problem
by introducing Garg and Könemann’s framework and proposing
MT algorithms with an approximate ratio of 1-3𝜍.

3. The proposed ST and MT algorithms are evaluated by extensive
simulation experiments and compared with three baseline algo-
rithms. The results show that our algorithm is significantly supe-
rior to these baseline algorithms in terms of utility, throughput,
and energy consumption.

This paper is organized as follows. Section 2 summarizes the related
work of task offloading. Section 3 proposes the system model to de-
scribe the dynamics of the network and formulates the problem of
utility maximization. The TEG is constructed in Section 4, and the
utility maximization problem is transformed into the corresponding
TEG problem. Sections 5 and 6 design the corresponding ST and MT
algorithms for a single terminal and multiple terminals respectively and
carry out the theoretical analysis. This paper evaluates the performance
of our proposed algorithms through extensive experiments in Section 7.
Section 8 summarizes the work of this paper.

Table 1 lists the main symbols used in the paper.

2. Related works

2.1. IoT Edge Computing

Extensive research was devoted to the field of computing offloading
in IoT edge computing [27,28]. Guo et al. arranged multiple mobile
terminals to offload their computation tasks to the remote cloud. The
2

clock frequency and transmission power of mobile terminals were
Table 1
The main symbols used in the paper.

Sym. Explanation Sym. Explanation

𝐺 Graph 𝐺𝛤 TEG
𝑣 Node 𝑒 Edge
𝜏 Time slot 𝑇 Period
𝑉 Node set 𝑉 𝛤 TEG node set
𝐸 Edge set 𝐸𝛤 TEG edge set
𝑀 # of nodes 𝑁 # of edges
ℎ Node process ability 𝜃 Remaining energy
𝜙 Consumed energy 𝜌𝑟 Receiving power
𝜌𝑡 Transmission power 𝑓 Throughput
𝑢 Utility 𝑐 Edge capacity
𝑝 Single offloading path 𝑙 Length function
𝐼 Interference function 𝑟 Link quality
𝑃 Path set 𝑄 Objective value function
𝐹 Set of task 𝐾 |𝐹 |
𝜖, 𝜍, 𝜉, 𝛿 Constants 𝑧, 𝜆 Variable for dual problem

optimized to minimize the energy consumption and the computation
delay while considering the task priority requirements [29]. Wang et al.
investigated energy and task causality constraints due to task dynamic
arrival and channel fluctuations and studied the terminal collecting
energy from the energy beamforming, which could be used to perform
computing tasks locally or offload tasks to the edge servers [30].
In [31], Zhang et al. proposed a stochastic mixed integer nonlinear
programming problem based on joint optimization of the task alloca-
tion decision, flexible computational resource scheduling and wireless
resource allocation. Guo et al. considered representing the energy-
efficient computation offloading problem as a mixed integer non-linear
programming problem [32].

Existing works were devoted to the problem of computation of-
floading in multi-hop scenarios [33,34], where edge servers have a
connection with some other edge servers or clouds and share resources
with each other [33]. Funai et al. proposed a heuristic algorithm
for iterative task assignment, which could optimize the collaborative
network of computing task allocation in the multi-hop collaborative
network [34]. However, these efforts focused on independent tasks
and usually did not jointly take network flow scheduling into account.
In [35], the problem of fine-grained task offloading in edge computing
of low-power IoT systems was studied. The goal was to minimize
the average task duration of all IoT applications. The unique task
topologies and schedules of the IoT network had a great impact on the
performance and resource utilization of the whole task offload [36,37].
Wang et al. proposed a multi-user task offloading scheme based on non-
orthogonal multiple access technologies, which could make multi-users
offload tasks simultaneously to increase efficiency [36]. Apostolopoulos
et al. considered the impact of users’ risk-seeking or loss-aversion
behaviors on mobile edge computing policies under the influence of
current uncertainties such as unstable network connectivity [37].

2.2. iTEN Dynamics

The network dynamics were studied including some time-varying
factors separately such as energy harvested, link quality, and power
consumption. Zhan et al. considered the variation of transmission rate
because the dynamic environment disturbs the channel [38]. Some
works considered online offloading in iTEN, where task arrival time
and channel state were time-varying [31,39]. He et al. considered
that each user could only have one task per time slot in the multi-
access edge computing system [40]. Liu et al. considered the network
topology changes at different time slots due to IoT terminal or edge
server movement [41]. In paper [42], Liu et al. considered that the
geographical location of the users may change at different time slots.
As users move, their tasks were migrated to nearby edge servers. In

these works, dynamic factors such as transmission rate and dynamic

Computer Networks 214 (2022) 109164J. Wang et al.
Fig. 1. (a) represents the original network, (b) constructs the corresponding TEG, the horizontal axis represents the time slot, and the time span is represented by the slot, such
as [𝑡𝑖−1, 𝑡𝑖] is denoted by slot 𝜏𝑖.
task arrival were considered, but in the iTEN, wireless interference and
network dynamics were not fully considered.

From the existing works, we can find that the dynamics are the
inherent features of iTEN and usually coexist. The existing related
works are considered a part of such features separately so as not able
to meet the fact that the dynamics and wireless interference coexist.

3. System model and problem formulation

3.1. System model

This paper constructs an actual architecture for collaborative task
offloading in iTEN, as shown in Fig. 1(a), which includes three layers,
namely terminal layer, edge layer and cloud layer. The terminal layer
composes of diversified IoT terminals and the edge layer consists of a
certain number of edge servers. This section introduces a graph 𝐺(𝑉 ,𝐸)
to represent the iTEN, where 𝑉 = {𝑣𝑗 , 𝑗 = 1,… ,𝑀}, 𝐸 = {𝑒𝑗𝑘,∀𝑣𝑗 , 𝑣𝑘 ∈
𝑉 } and |𝐸| = 𝑁 . 𝑉 is a node-set including the cloud, edge servers
and terminals. Without loss of generality, 𝑣0 represents the cloud node,
and 𝑣𝑠 and 𝑣𝑚 represent the edge server node and the terminal node
respectively. The node-set 𝑉 is divided into two sets 𝑉𝑠 and 𝑉𝑚. The
former contains the cloud and edge server while the latter contains the
terminals, i.e., ∀𝑣0, 𝑣𝑠 ∈ 𝑉𝑠 and ∀𝑣𝑚 ∈ 𝑉𝑚. 𝑉𝑚 can be divided into two
subsets: 𝑉𝑚,𝑖𝑛𝑓 and 𝑉𝑚,𝑐𝑜𝑙, i.e. 𝑉𝑚 = {𝑉𝑚,𝑖𝑛𝑓 , 𝑉𝑚,𝑐𝑜𝑙}. 𝑣𝑚 ∈ 𝑉𝑚,𝑖𝑛𝑓 has a
fixed power supply while the other in 𝑉𝑚,𝑐𝑜𝑙 may harvest energy from
the environment and store it in its own battery of capacity 𝐵𝑖. In the
energy model, the energy harvested by each terminal node is different
from others due to the spatial inhomogeneity and time-variation of the
environmental energy distribution [43]. Denote the energy collected
by terminal node 𝑣𝑖 ∈ 𝑉𝑚,𝑐𝑜𝑙 in the time slot 𝜏 as 𝜑𝑖(𝜏). Assume that the
remaining battery energy of terminal node 𝑣𝑖 at the start time 𝑡𝑘 of time
slot 𝜏𝑘+1 is 𝜃𝑖(𝑡𝑘). Therefore, the energy that terminal node 𝑣𝑖 can use
to transmit tasks in time slot 𝜏 cannot exceed the sum of its remain-
ing and harvested energy. This paper further considers the imperfect
charging efficiency of the battery, denoted by 𝜎, and gets the following
formula:

𝜃𝑖(𝑡𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min {𝐵𝑖, 𝜃𝑖(𝑡𝑘−1)+
𝜎(𝜑𝑖(𝜏𝑘) − 𝜙𝑖(𝜏𝑘))}, 𝜑𝑖(𝜏𝑘) ≥ 𝜙𝑖(𝜏𝑘);

max {0, 𝜃𝑖(𝑡𝑘−1)+
𝜑𝑖(𝜏𝑘) − 𝜙𝑖(𝜏𝑘)}, 𝜑𝑖(𝜏𝑘) < 𝜙𝑖(𝜏𝑘).

(1)

𝐸 contains all directional edges between nodes and each edge
denotes a communication link. For example, 𝑒𝑗𝑘 denotes a link from
𝑣𝑗 to 𝑣𝑘 and is associated with a capacity 𝑐(𝑒). The communication link
can be either wireless or wired. Notice that 𝑐(𝑒) represents the commu-
nication bandwidth limitation of edge 𝑒 as the following constraint.

𝑓 ≤ 𝑐(𝑒), ∀𝑒 ∈ 𝐸; (2)

where 𝑓 is the throughput going through the edge 𝑒 and denotes the
task load in this paper.
3

This paper studies the scenario where the iTEN is dynamic in several
properties, including the link quality, the transmission power, and the
task processing ability, which change over time because of variable
physical reasons. At time 𝑡, this paper denotes the edge 𝑒’s link quality
by 𝑟𝑒(𝑡), ∀𝑒 ∈ 𝐸, as well as node 𝑣𝑗 has a transmission power and node
𝑣𝑘 has a receiving power, represented by 𝜌𝑗𝑡 (𝑡) and 𝜌𝑘𝑟 (𝑡) respectively,
where 𝜌𝑗𝑡 (𝑡) > 0 and 𝜌𝑘𝑟 (𝑡) > 0, ∀𝑣𝑗 , 𝑣𝑘 ∈ 𝑉 .

For any edge 𝑒 whose task load is 𝑓 , it requires the transmitter and
receiver to spend energy on communication, which is time-dependent
and the equation is given as follows:

𝜙𝑗tx(𝑓, 𝑡𝑡𝑥) = ∫𝑡𝑡𝑥
𝑓𝜌𝑗𝑡 (𝑡)∕𝑟𝑒(𝑡);

𝜙𝑘rx(𝑓, 𝑡𝑟𝑥) = ∫𝑡𝑟𝑥
𝑓𝜌𝑘𝑟 (𝑡)∕𝑟𝑒(𝑡).

(3)

where 𝜙𝑗tx(𝑓, 𝑡) and 𝜙𝑘rx(𝑓, 𝑡) represent the energy consumptions of the
𝑣𝑗 and 𝑣𝑘 and 0 ≤ 𝜙𝑗tx(𝑓, 𝑡𝑡𝑥) ≤ 𝜃𝑗 (𝑡𝑡𝑥), 0 ≤ 𝜙𝑘rx(𝑓, 𝑡𝑟𝑥) ≤ 𝜃𝑗 (𝑡𝑟𝑥). 𝑡𝑡𝑥 and 𝑡𝑟𝑥
are the time moments to begin the transmission and reception.

Some nodes also consume energy except that on communication
when it processes tasks and suppose that node 𝑣𝑖 is one of them.
This paper also assumes that energy consumption on task processing
is dynamic and lets 𝜓 𝑖𝑝(𝑡) denote the energy consumption of node 𝑣𝑖 to
process unit task load at time 𝑡. Given the task with the load 𝑓𝑝, the
time slot is 𝑡𝑝 to process 𝑓𝑝 and the consumed energy is given as the
following equation.

𝜙𝑖c(𝑓, 𝑡𝑝) = ∫𝑡𝑝
𝑓𝑝𝜓

𝑖
𝑝(𝑡),∀𝑣𝑖 ∈ 𝑉𝑠; (4)

Each node may spend its energy on both communication and task
processing. Let 𝜙𝑖(𝜏) denote the total energy consumptions of node 𝑣𝑖
in the time slot 𝜏, and get the components of the consumed energy as
the following equation.

𝜙𝑖(𝜏) = 𝜙𝑖tx(𝑓𝑡𝑥, 𝑡𝑡𝑥) + 𝜙
𝑖
rx(𝑓𝑟𝑥, 𝑡𝑟𝑥) + 𝜙

𝑖
c(𝑓𝑝, 𝑡𝑝),∀𝑣𝑖 ∈ 𝑉 ; (5)

where 𝑓𝑡𝑥, 𝑓𝑟𝑥, and 𝑓𝑝 are transmitted, received, and processed task
load respectively. For each node in 𝑉𝑚,𝑖𝑛𝑓 , the energy consumed on the
communication cannot exceed the battery capacity in the whole period
𝑇 . With the definitions of energy consumption in Eq. (5), The overall
energy consumed by each terminal node cannot exceed the remaining
energy in its battery as the following energy constraint:

∫𝑇
𝜙𝑖(𝜏) ≤ 𝜃𝑖(𝜏),∀𝑣𝑖 ∈ 𝑉𝑚,𝑖𝑛𝑓 ; (6)

Consider that terminal node 𝑖 can interfere with other terminal
nodes in the process of offloading tasks through wireless transmission.
The transmission rate 𝜇(𝑡) of terminal node 𝑖 at time 𝑡 can be obtained
by the following Shannon formula [44,45]:

𝜇𝑖𝑘(𝑡) = 𝐵𝑖𝑘 log2 (1 +
𝜌𝑖𝑡(𝑡)𝑔

𝑖
𝑘

∑ 𝑗 𝑗); (7)

𝜔 + 𝑣𝑗∈𝑉𝑚 ,𝑗≠𝑖 𝜌𝑡 (𝑡)𝑔𝑘

Computer Networks 214 (2022) 109164J. Wang et al.

p

f
s

G
w

𝑓

b
a
w
m
𝑒
s
t
e

3

f
t
o
n
u
t
𝜌
i
s
p



𝑘
a

∪
n
t
a
t
n
L
o
c
w
b

c
o
n
t
a
s
𝑣
e

m
f
t
t

where 𝐵𝑖𝑘 and 𝑔𝑖𝑘 denote the bandwidth and channel gain between
terminal node 𝑖 and node 𝑘 respectively. 𝜔 denotes the white Gaussian
noise. Formula (7) represents the way to calculate the terminal trans-
mission rate when the other terminals may transmit simultaneously.

Each node in 𝑉𝑠 has its own computing capacity denoted by ℎ𝑖(𝑡),
which refers to the maximum available ability of node 𝑣𝑖 to process
tasks at time 𝑡. When each node 𝑣𝑖 in the set 𝑉𝑠 processes a task with the
load of 𝑓 , the time consumption 𝛥𝑡 can be calculated by the following
formula.

𝛥𝑡𝑖𝑝(𝑓, 𝑡𝑝) = ∫𝑡𝑝
𝛿1

𝑓
ℎ𝑖(𝑡)

, ∀𝑣𝑖 ∈ 𝑉𝑠; (8)

where 𝛿1 is a constant, and 𝑡𝑝 is the time moment to begin the task
rocessing. When there is no task to process, 𝛥𝑡𝑖𝑝(𝑓, 𝑡𝑝) = 0.

Each terminal may have a series of tasks to the process by of-
loading. This paper assumes that the task can be splittable into some
egments with different lengths, and these segments forms a task 𝑓 , i.e.,

each splittable task contains a certain amount of load and different from
others. When the task 𝑓 is sent to node 𝑣𝑖, such as a edge server or cloud
to process, which has time variable computing power ℎ𝑖 to process,
it gets some utility as the following utility function if 𝑓 is processed
successfully.

𝑢𝑖(𝑓, 𝑡) = 𝛿2𝑓ℎ𝑖(𝑡), ∀𝑣𝑖 ∈ 𝑉𝑠; (9)

𝑢𝑖(𝑓, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛿2
𝛥𝑡𝑖𝑝(𝑓, 𝑡𝑝)

, 𝛥𝑡𝑖𝑝(𝑓, 𝑡𝑝) > 0; (10)

0, 𝛥𝑡𝑖𝑝(𝑓, 𝑡𝑝) = 0. (10′)

where 𝛿2 is a given positive constant. The utility function is the
reciprocal of the time to process the task 𝑓 , which means that the
higher computing power leads to the better utility when given the task.

For each node in 𝑉𝑠, the constrained resource is the limited time.
iven a time duration 𝛿𝑡 and the processed ability ℎ, the task load 𝑓
hich can be processed should follow the below constraint:

≤ ∫𝛿𝑡
ℎ(𝑡); (11)

Interference function. In iTENs, some nodes may communicate
y wireless so the wireless interference cannot be evitable. This paper
ssumes that the node cannot transmit and receive simultaneously
hen it communicates by wireless and adopts a general interference
odel 𝐼 . Let 𝐼𝑒 represents the interference set of edge 𝑒, including edge
and edges within the interference range of 𝑒, and 𝐼 ′𝑒 represents the

et of edges that would interfere with edge 𝑒. When the node transmits
asks with wired, the corresponding edge would not interfere with other
dges, and the interference set of edge 𝑒 is empty, i.e., 𝐼𝑒 = ∅.

.2. Problem formulation

This paper studies the problem that the splittable tasks are offloaded
rom the terminals to the edge servers or the cloud so as to maximize
he utility in the dynamic iTEN. Given the set 𝑉𝑚 of terminals, each
f which has a series 𝐹 of tasks to process by offloading to those
odes in 𝑉𝑠, it costs some energy on the offloading and receives some
tility. Assume that the energy consumption on communication and
ask processing is dynamic, and the related parameters, i.e., ℎ𝑖(𝑡) and
(𝑡), are previously known or can be estimated. The problem studied
n this paper is to offload the task in 𝐹𝑖, ∀𝑣𝑖 ∈ 𝑉𝑚 to some nodes in 𝑉𝑠
o as to maximize the overall utility under the constraints given in the
revious subsections. The problem is formulated as below.

1 ∶ max
∑

𝑣𝑖∈𝑉𝑠

𝑢𝑖

𝑠.𝑡. Constraints (6) and 𝐼 ; (12)
4

∀𝑓 ∈ 𝐹𝑗 , 𝑣𝑗 ∈ 𝑉𝑚. (13)
When constraints in (12) are simplified to the wireless interference
𝐼 , the problem 1 convert to the set coverage of the optimization
problem and so that 1 is evidently NP-hard.

4. TEG and problem transformation

To describe the network dynamics, this section constructs the TEG,
with which the problem 1 can be transformed as the static one so as
to easy us to design the solution.

4.1. TEG

This section defines the graph 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤) to represent the TEG of
𝐺(𝑉 ,𝐸), where 𝑉 𝛤 and 𝐸𝛤 denote the sets of the nodes and edges
in TEG. This paper discretizes the system of the iTEN, where the
period 𝑇 is consists of 𝑚 time slots of equal duration and assumes
that the network properties keep constant including the processing
ability, communication power, and link quality in each duration 𝜏.
The horizontal time coordinate is labeled with the time moments 𝑡𝑘,
= 0,… , 𝑚. The time slot 𝜏𝑘 represents the time duration between 𝑡𝑘−1

nd 𝑡𝑘. The TEG of 𝐺 is constructed through the following steps:

1. Every node 𝑣 in 𝑉 is copied 𝑚 + 1 times denoted by 𝑣(𝑡𝑘), 𝑘 =
0,… , 𝑚, and named as c-node. All the c-nodes form 𝑉 𝛤 . Each
c-node is assigned the parameter vector [𝑐(𝑣(𝑡𝑘)), 𝜌𝑡(𝑡𝑘), 𝜌𝑟(𝑡𝑘)],
which are computing power and transmission power and receiv-
ing power respectively.

2. Create a directional link between c-node 𝑣(𝑡𝑘) and its next c-node
𝑣(𝑡𝑘+1), and call it 𝑠1-edge denoted by 𝑒𝑠1 (𝜏𝑘+1). Create another
𝑠2-edge from each edge server node 𝑣(𝑡𝑘) ∈ 𝑉𝑠 to itself, and
denote it by 𝑒𝑠2 (𝜏𝑘+1). Set their weights as [0, 𝑐(𝑒𝑠1)] and [1, 𝑐(𝑒𝑠2)]
respectively. The set 𝐸𝑠 is consists of these s-edges.

3. For each node 𝑣 ∈ 𝑉 in 𝐺, create c-edge from 𝑣(𝑡𝑘) to 𝑣(𝑡𝑘+1), 𝑘 =
0,… , 𝑚, denoted by 𝑒𝑐 (𝜏𝑘+1). Set parameter vector [𝑟𝑒𝑐 (𝜏), 𝑐(𝑒𝑐)]
for each of them and represent link quality and edge capacity
respectively. The set 𝐸𝑐 is consists of these c-edges.

4. Create a node 𝑣 as the virtual node (v𝑣 for short). Let all of
‘‘final" c-nodes from 𝑉𝑠, i.e., 𝑣𝑖(𝑡𝑚), ∀𝑣𝑖 ∈ 𝑉𝑠, connect to v𝑣. Set
the weights of the newly created edges to be zero and include
the edges into 𝐸𝑐 .

The above process leads to 𝑉 𝛤 = {𝑣(𝑡𝑗), j = 0, 1, 2, ⋯, 𝑚, 𝑣 ∈ 𝑉 }
{v𝑣} and 𝐸𝛤 = 𝐸𝑠 ∪ 𝐸𝑐 in 𝐺𝛤 . The reason to create 𝑠2-edge for each
ode in 𝑉𝑠 means that the edge server has the ability to relay tasks
o other nodes and no energy consumption on task processing. By the
bove steps, this section obtains a new graph 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤). In 𝐺𝛤 , each
erminal has more than one copies and the set 𝑉𝑚 is extended as a
ew set. The c-node in TEG can be c-terminal, c-edge server or c-cloud.
et the first c-terminal 𝑣(𝑡0) of each terminal in 𝑉𝑚 be the source to
ffload the task, which is called the source c-terminal. All of the source
-terminals are included in a new set, which is also denoted by 𝑉 𝛤

hen no confusion. The capacity of s-edge and c-edge in TEG is denoted
y the |𝜏| and 𝜖|𝜏| respectively, where 𝜖 > 1 is a small positive constant.

Fig. 1 gives an example to transfer a sample original network to its
orresponding TEG. The original network 𝐺(𝑉 ,𝐸) in Fig. 1(a) consists
f 𝑉 = {𝑣𝑘, 𝑘 = 0,… , 5} and 𝐸 = {𝑒𝑘, 𝑘 = 1,… , 8}. In Fig. 1(b), each
ode in 𝐺(𝑉 ,𝐸) is copied of 𝑚 + 1 times, i.e., the triangular node 𝑣5 in
he top row, 𝑣5 has 𝑚 + 1 c-nodes, 𝑣5(𝑡𝑘), 𝑘 = 0,… , 𝑚. Each c-node has
gray dash-line arrow pointing itself from the current slot to the next

lot, such as 𝑣5(𝑡0) to 𝑣5(𝑡1). 𝑣5 has a series of 𝑠1-edges, such as 𝑣4(𝑡𝑘) to
0(𝑡𝑘+1), 𝑘 = 0, 1,… , 𝑚 − 1. The second step creates the 𝑠2-edge for the
dge server. For example, the red circular arrow on 𝑣5(𝑡𝑘), 𝑘 = 0,… , 𝑚.
Path in TEG. Recall that the purpose of the task offloading is to

aximize the utility. Given a task, the purpose can be transferred to
ind the shortest path in TEG. The task offloading consists of two parts,
o find the path between the source and target and to implement the
ask. To obtain the utility in the dynamic iTEN, it requires to finding the

Computer Networks 214 (2022) 109164J. Wang et al.

c
t
e
c
N
t
d

D
s
𝑠

t
w
i

e

s
S
f

T
o
e
a
m
c

t

i

a
a
t
𝑣
𝑣
(
t

C
n
a

s
o
t
A
o
p
d
e
t
a
W
b
e
i
t
r
i
e
𝜌
a
b
f

𝑓

path with a certain cost and the target feeding back with some utility
while the dynamic factors should be concerned in this paper. TEG
can support the requirement and includes the network dynamic and
wireless interference by finding the shortest path with the maximum
flow. In TEG, each path contains the c-edge, 𝑠1-edge, 𝑠2-edge and
-node. The 𝑠1-edge weight represents the cost to deliver the task while
he 𝑠2-edge weight refers to whether to offload tasks from the current
dge node to other edge nodes or cloud nodes. Each c-node has the
apacity to guarantee the consumed energy below the battery capacity.
otice that the edges linked to the virtual node have zero weight and

he capacity of the virtual node is very large. This section gives the
efinition of the single offloading path in TEG.

efinition 1 (Single Offloading Path). An offloading path is an edge
et from the source c-node 𝑣𝑘(𝑡0) to the v𝑣 in the TEG, including the
1-edges, c-edges or the 𝑠2-edges, denoted by 𝑝𝑘.

Through every single offloading path, the source c-node can send
tasks to v𝑣. Let 𝑃𝑖 denote the set of the single offloading path from 𝑣𝑖(𝑡0)
o v𝑣, 𝑣𝑖 ∈ 𝑉𝑚. The task loads of them are thus 𝑓 (𝑣𝑖(𝑡0), v𝑣) =

∑

𝑝∈𝑃𝑖 𝑓𝑝,
here 𝑣𝑖 ∈ 𝑉𝑚. Let 𝑃 be the set of all paths from all first c-nodes in 𝑉𝑚,
.e., 𝑃 = ∪𝑣𝑖∈𝑉𝑚𝑃𝑖.
Discrete constraints. Recall that each edge has the bandwidth and

ach 𝑠1-edge has limited capacity accordingly.
∑

𝑝∈𝑃

∑

𝑒∈𝑝
𝑓𝑝 ≤ |𝜏|𝑐(𝑒), ∀𝜏 ∈ 𝑇 , 𝑒 ∈ 𝐸𝛤 ; (14)

Some edges represent wireless communication and their corre-
ponding 𝑠1-edges have capacities affected by the wireless interference.
o each 𝑠1-edge has the constraint more general than that in (14) as the
ollowing one.
∑

𝑝∈𝑃

∑

𝑒∈𝑝
𝑓𝑝 +

∑

𝑒′(𝜏)∈𝐼 ′𝑒(𝜏)

𝑓𝑒′(𝜏) ≤ 𝑐(𝑒), ∀𝜏 ∈ 𝑇 , 𝑒′, 𝑒 ∈ 𝐸𝛤 ; (15)

he above constraints stipulate that within the interference range of
ne 𝑠1-edge in each time slot, the total throughput of the wireless 𝑠1-
dges should not be greater than the capacity of the 𝑠1-edges. Note that
ny c-edge, 𝑠2-edge, or wired 𝑠1-edge is not affected by the interference
odel, i.e., 𝐼 ′𝑒(𝜏) = ∅, so it naturally satisfies the constraints. The

onstraint (15) is suitable for any edge 𝑒 ∈ 𝐸𝛤 , i.e., the constraint is
the generalization of the constraint (14).

The constraint (11) shows the limitation on the time available for
the task processing. Since each node 𝑣𝑖 has at most time |𝜏| to process
ask during each time slot 𝜏, each c-node 𝑣𝑖(𝜏) can process the load
ℎ𝑖(𝜏)|𝜏| at most, where ℎ𝑖(𝜏) is the discretized processing ability of 𝑣𝑖
n 𝜏. The capacity of each c-node 𝑣𝑖(𝜏) is ℎ𝑖(𝜏)|𝜏|, and the throughput

is constrained as the following equation.

𝑓 ≤ ℎ𝑖(𝜏)|𝜏|; (16)

The parameters 𝜌𝑖𝑡(𝑡), 𝜌𝑖𝑟(𝑡) and ℎ𝑖(𝑡) keep constant in each time slot in
TEG. In order to simplify the representation, the time moments 𝑡𝑡𝑥, 𝑡𝑟𝑥
and 𝑡𝑝 in Eq. (5) are omitted here. Let 𝜙𝑖(𝜏) denote the energy consumed
by node 𝑣𝑖 in the time slot 𝜏. The discrete version of Eq. (5) is given as
the following one.

𝜙𝑖(𝜏) = 𝜙𝑖tx(𝑓𝑡𝑥) + 𝜙
𝑖
rx(𝑓𝑟𝑥) + 𝜙

𝑖
c(𝑓𝑝),∀𝑣𝑖 ∈ 𝑉 𝛤 ; (17)

Accordingly Eq. (6) is discretized as the following energy constraint:

∑

𝜏∈𝑇
𝜙𝑖(𝜏) ≤ 𝜃𝑖(𝜏),∀𝑣𝑖 ∈ 𝑉𝑚,𝑖𝑛𝑓 ; (18)

4.2. Discretized Utility Maximization problem

Some nodes have limited energy and their corresponding c-nodes
5

update their energy by Eq. (17). Discrete the problem 1 into the
corresponding 2 in TEG under the condition of discrete constraint, as
shown below.

2 ∶ max
∑

𝑣𝑖(𝑡0)∈𝑉 𝛤𝑚

𝑢(𝑣𝑖(𝑡0), v𝑣)

𝑠.𝑡. Constraints (15), (16) and (18);
𝑓𝑖 ⩾ 0, ∀𝑝 ∈ 𝑃𝑖, 𝑣𝑖(𝑡0) ∈ 𝑉 𝛤

𝑚 .

5. Single terminal scheme

The preliminary purpose of task offloading is to maximize the utility
and minimize the cost. This section studies the basic case where there
is only one terminal to offload task and designs the ST algorithm.

5.1. Single offloading path construction

This subsection firstly investigates the construction of a single of-
floading path through the two steps of avoiding circulation and dis-
tributing energy in order to maximize utility and minimize cost.

Circle avoidance. The 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤) may comprise cycles but any
path that contains cycles would decrease the utility and increase the
cost instead. Avoid any cycles when looking for a single offloading path
in the task offloading process. Fortunately, it is not very difficult to
determine whether a path contains cycles or not. Any path containing
a cycle must pass through a node in 𝐺(𝑉 ,𝐸) twice. Therefore, there
re two c-nodes contained in the single offloading path and there is
t least one 𝑠1-edge among them. For example, as shown in Fig. 1(b),
here is a path 𝑣1 → 𝑣4 → 𝑣5 → 𝑣4 in 𝐺. Its corresponding path is
1(𝑡0) → 𝑣4(𝑡1) → 𝑣5(𝑡2) → 𝑣4(𝑡3). There are two c-nodes 𝑣4(𝑡1) and
4(𝑡3) of the same node 𝑣4 and there is at least one 𝑠1-edge, such as
𝑣1(𝑡0), 𝑣4(𝑡1)). Therefore, the cycle in the path can be identified by using
he following claim.

laim 1 (Cycle Identification). If any single offloading path in the original
etwork 𝐺 contains cycles, it must contain at least two same c-nodes and
t least one 𝑠1-edge between them in corresponding TEG.

Energy allocation. Every single offloading path starts from one
ource c-terminal to the v𝑣 and contains c-edge server or c-cloud. In
rder to maximize the utility, it has to deliver and process the task with
he task load as much as possible according to the definition in Eq. (9).
ccordingly, the task processing and delivering require the energy
n transmission, receiving or task processing on the single offloading
ath with appropriate proportion so that there is an equal load to be
elivered and processed. Concretely, the source c-terminal only spends
nergy on the transmission so it can devotes all its remaining energy on
ransmission to maximize the delivered task load. When one node acts
s a relay node, it must use its energy for transmission and reception.
hen one node takes the task processing, it has to spend its energy on

oth receiving and processing. This section proposes a way to allocate
nergy for the latter two cases. Suppose that a c-node 𝑣𝑖 is a relay node
n the TEG. When in the time slot 𝜏𝑘, it serves as a receiver to receive
asks through edge 𝑒, the remaining energy it can use is 𝜃𝑖(𝑡𝑘−1), the
eceiving power is 𝜌𝑖𝑟𝑥(𝜏𝑘), and the wireless link quality is 𝑟𝑒(𝜏𝑘). When
n the time slot 𝜏′𝑘, it serves as a transmitter to transmit tasks through
dge 𝑒′, the remaining energy it can use is 𝜃𝑖(𝑡𝑘), the transmission power
𝑖
𝑡𝑥(𝜏𝑘′), and the wireless link quality is 𝑟𝑒′ (𝜏𝑘′), where 𝑘 < 𝑘′. Let 𝑥, 𝑓 ,
nd 𝑓 ′ be the amounts of energy spent on task receiving, data received
y 𝑣𝑖(𝑡𝑘), and data transmitted by 𝑣𝑖(𝑡𝑘′) respectively, and then get the
ollowing equation.

=
𝑥𝑟𝑒(𝜏𝑘)
𝜌𝑖𝑟𝑥(𝜏𝑘)

; (19)

𝑓 ′ =
[𝜃𝑖(𝑡𝑘−1) − 𝑥]𝑟𝑒′ (𝜏𝑘′)

𝜌𝑖𝑡𝑥(𝜏𝑘′)
. (20)

To enable the two c-nodes to have the equal delivered task load, this
paper assigns the energy for transmission and receiving satisfying the

Computer Networks 214 (2022) 109164J. Wang et al.
Algorithm 1 Single c-node energy allocation
Input: Set transmission, receiving or task processing power, and the
remaining energy 𝜃𝑖(𝑡𝑘−1) for c-node 𝑣𝑖(𝑡𝑘).
Output: Allocate the energy to the c-node 𝑣𝑖(𝑡𝑘) for task transmission,
receiving or processing.

1: if 𝑣𝑖(𝑡𝑘) is the source c-terminal then
2: It spends all remaining energy 𝜃𝑖(𝑡𝑘−1) on task transmission;
3: end if
4: if 𝑣𝑖(𝑡𝑘) is the relay then
5: It allocates energy according to Equation (21);
6: end if
7: if 𝑣𝑖(𝑡𝑘) is the task processor then
8: It allocates energy according to Equation (24).
9: end if

following relationship while exploring all the remaining energy 𝜃𝑖(𝑡𝑘−1)
to maximize the delivered load. To set 𝑓 = 𝑓 ′, and gets the amounts of
energy on receiving and transmission are given as follows:

𝜃𝑖𝑟𝑥(𝜏𝑘) =
𝑟𝑒′ (𝜏𝑘′)𝜌𝑖𝑟𝑥(𝜏𝑘)𝜃𝑖(𝑡𝑘−1)

𝑟𝑒(𝜏𝑘)𝜌𝑖𝑡𝑥(𝜏𝑘′) + 𝑟𝑒′ (𝜏𝑘′)𝜌𝑖𝑟𝑥(𝜏𝑘)
;

𝜃𝑖𝑡𝑥(𝜏𝑘′) =
𝑟𝑒(𝜏𝑘)𝜌𝑖𝑡𝑥(𝜏𝑘′)𝜃𝑖(𝑡𝑘−1)

𝑟𝑒(𝜏𝑘)𝜌𝑖𝑡𝑥(𝜏𝑘′) + 𝑟𝑒′ (𝜏𝑘′)𝜌𝑖𝑟𝑥(𝜏𝑘)
.

(21)

The method to allocate energy for the cloud and edge server to
process tasks is quite similar. Suppose that a c-node is a processing node
in the TEG. When in the time slot 𝜏𝑘, it serves as a receiver to receive
tasks through edge 𝑒, the remaining energy it can use is 𝜃𝑖(𝑡𝑘−1), the
receiving power is 𝜌𝑖𝑟𝑥(𝜏𝑘), and the wireless link quality is 𝑟𝑒(𝜏𝑘). When
it serves as a task processor to processing tasks, the remaining energy
it can use is 𝜃𝑖(𝑡𝑘), the processing power 𝜌𝑖𝑝(𝜏𝑘′). Let 𝑥, 𝑓 and 𝑓 ′ be the
amount of energy spent on task receiving, the amount of data received
by 𝑣𝑖(𝑡𝑘) and the amount of data processed by 𝑣𝑖(𝑡𝑘′) respectively.

𝑓 =
𝑥𝑟𝑒(𝜏𝑘)
𝜌𝑖𝑟𝑥(𝜏𝑘)

; (22)

𝑓 ′ =
[𝜃𝑖(𝑡𝑘−1) − 𝑥]

𝜌𝑖𝑝(𝜏𝑘′)
. (23)

Let 𝑓 = 𝑓 ′ and lead to the result in the below equation.

𝜃𝑖𝑟𝑥(𝜏𝑘) =
𝜌𝑖𝑟𝑥(𝜏𝑘)𝜃𝑖(𝑡𝑘−1)

𝑟𝑒(𝜏𝑘)𝜌𝑖𝑝(𝜏𝑘′) + 𝜌𝑖𝑟𝑥(𝜏𝑘)
;

𝜃𝑖𝑝(𝜏𝑘′) =
𝑟𝑒(𝜏𝑘)𝜌𝑖𝑝(𝜏𝑘′)𝜃𝑖(𝑡𝑘−1)

𝑟𝑒(𝜏𝑘)𝜌𝑖𝑝(𝜏𝑘′) + 𝜌𝑖𝑟𝑥(𝜏𝑘)
.

(24)

Determine the path utility and cost.When each c-node is assigned
energy by the above equations, the c-edge server or c-cloud may be able
to deliver or process tasks with a different load. However, every single
offloading path delivers and processes one same task so the load keeps
invariable. So we have the following claim for the task load on every
single offloading path and summarize the above energy allocation as
Algorithm 1.

Claim 2. For a task delivered on a single offloading path 𝑝, its load,
denoted by 𝑓𝑝 is determined by the following way: 𝑓𝑝 = min{𝑓𝑒, 𝑒 ∈ 𝑝},
where 𝑓𝑒 is calculated by the available energy for edge 𝑒, which is determined
by Eqs. (21) and (24).

5.2. Single terminal algorithm design

The section designs an algorithm, named Single Terminal algorithm
(ST), to offload tasks when there is only one terminal. The basic
mechanism of task offloading is to find an edge server or cloud server
6

Fig. 2. There are two 𝑝𝑖, 𝑝1 and 𝑝2, in TEG.

for the terminal and search for a path with the least consumption for
task offloading. In TEG, the task communication power and the task
computing power of the c-node have time-varying characteristics, so
the cost and utility of task delivery are also time-varying. The core
mechanism of ST is to look for the paths with the maximal utility
and the minimum cost, and then renew the remaining energy of the
c-node. The process is iterative till there is no such path existing. Given
a source c-terminal 𝑣𝑖(𝑡0) and the v𝑣 in 𝐺𝛤 , the algorithm ST first
looks for all paths from source terminal 𝑣𝑖(𝑡0) to the destination v𝑣 and
includes these paths in 𝑃𝑠. In order to save costs, ST searches for paths
without cycles, so the Breadth First Search (BFS) can be used to find
𝑃𝑠. Next, according to the energy distribution method in Algorithm 1,
and according to Definition 1, find the maximum utility path 𝑝𝑚𝑎𝑥. Note
that if c-node 𝑣𝑖(𝑡) is the relay node on path 𝑝𝑖, it receives the task in
the previous time slot, and transmits it in the next time slot. And the
processing node c-node receives the task in the previous time slot and
then processes it in the next time slot. Their energy distribution method
is given in Algorithm 1. Finally, the remaining battery energy of the
c-node on the path 𝑝𝑚𝑎𝑥 and the remaining transmission capacity of the
edges interfered by these edges on the path 𝑝𝑚𝑎𝑥 are updated. Delete
all paths that contain 𝑠1-edges and whose updated capacity is negative
or 0 from 𝑃𝑠, and repeat the above steps until there are no paths in 𝑃𝑠.

This section illustrates the above process through the source ter-
minal c-terminal 𝑣2(𝑡0) in Fig. 2. First, the algorithm ST searches all
the paths from 𝑣2(𝑡0) to v𝑣 through BFS and puts them into the set
𝑃2. Second, calculate the utility of each path in the set 𝑃2 and find
the offloading path 𝑝𝑖 with the largest utility. For example, path 𝑝1
in Fig. 2 has the largest offloading utility, where 𝑝1 contains the
following c-nodes: 𝑝1 = 𝑣2(𝑡0) → 𝑣5(𝑡1) → 𝑣5(𝑡2) → ⋯ → 𝑣5(𝑡𝑚−1) →

𝑣5(𝑡𝑚) → v𝑣. Finally, update the remaining energy of nodes 𝑣2(𝑡𝑖),
𝑖 = 0,… , 𝑚, and 𝑣5(𝑡𝑗), 𝑗 = 1,… , 𝑚. Furthermore, the edge interfered by
path 𝑝1 needs to update the capacity. Assuming that the maximum load
of the edge e is 𝑐(𝑒), and it is interfered by the edge 𝑒(𝑣2(𝑡0), 𝑣5(𝑡1)) in 𝑝1,
the offloading amount of this edge is 𝑓 , and the remaining maximum
load of edge e is 𝑐(𝑒) -= 𝑓 . Perform the above steps iteratively until
there is no path in the set 𝑃2. Algorithm 2 describes the steps of the
algorithm in detail.

5.3. Algorithm analysis.

Theorem 1. The time complexity of Algorithm 2 is 𝑂(𝑚(𝑁 + 2𝑀)).

Proof. There are (𝑚 + 1)𝑀 c-nodes, 𝑚𝑀 𝑠1-edges, and 𝑚𝑁 c-edges
in TEG. Step 3 in Algorithm 2 needs to spend 𝑂(𝑚(𝑁 + 2𝑀)) time to
search all paths of the source terminal node 𝑣𝑠(𝑡0) through BFS at time
𝑡0. More than one bottleneck 𝑠1-edge is found in each round, so the
‘‘while’’ loop has no more than 𝑚𝑀 rounds to complete. Therefore, the
time complexity of Algorithm 2 is 𝑂(𝑚(𝑁 + 2𝑀)).

Computer Networks 214 (2022) 109164J. Wang et al.

O
o

a
q

6

a
a
B

s
t
c
N

i
c



𝑠

T
𝑙
t
𝑣

t
i
d
G

s

c
r
I
c
c
𝑠
p
a
I

t

e
u
𝑄
p
t
e
i
t
1
o
e
m

L
p

t
c
i
t
a
p

o
r
u
t



Algorithm 2 ST
Input: 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤), 𝐼 , and 𝐹
utput: From 𝑣𝑠(𝑡0) to v𝑣, the set of paths 𝑃𝑠 that maximizes the
verall task offloading utility.

1: The initial flow of all edges in 𝐺𝛤 is set to be zero, i.e. 𝑓 = 0;
2: Set 𝑃𝑠 = ∅, and define 𝑃 ′ = ∅ as a temporary path set;
3: Find all feasible paths of 𝑣𝑠(𝑡0) to 𝑣𝑣 through BFS, and add them to

the 𝑃 ′;
4: Use the method in Claim 1 to exclude paths containing loops from
𝑃 ′;

5: According to Algorithm 1, calculate the maximum load transferred
or processed by each 𝑠1-edge in 𝑃𝑠 with its maximum available
energy, and then calculate the maximum load each path;

6: while 𝑃 ′ ≠ ∅ do
7: Search for the path 𝑝𝑚𝑎𝑥 with the greatest task offloading utility,

and obtain its corresponding load 𝑓𝑚𝑎𝑥;
8: In Step 5, the energy allocation plan of the node has been cal-

culated, and each c-node’s remaining energy on 𝑝𝑚𝑎𝑥 is updated
according to this, and the remaining capacity of the edge on 𝑝𝑚𝑎𝑥
is updated to 𝑐(𝑒) − 𝑓𝑚𝑎𝑥;

9: The 𝑠1-edge interfered by edge on 𝑝𝑚𝑎𝑥 needs to update the
capacity, i.e., 𝑐(𝑒) − 𝑓𝑚𝑎𝑥, ∀𝑒 ∈ 𝐼𝑝𝑚𝑎𝑥 ;

10: Move 𝑝𝑚𝑎𝑥 from 𝑃 ′ to 𝑃𝑠;
11: end while

6. Multiple terminals dual method

This section studies the case where there are multiple terminals,
each of which has its own task set to offload. This paper introduces
Garg and Könemann’s framework [26] to transfer the problem 2 into

Maximum Concurrent Flow (MCF) problem, and then a simple and
uick approximate solution is designed.

.1. Garg and Könemann’s framework

The MCF problem is a variation of the network flow problem and
llows each commodity flow to deliver a flow demand for itself. Garg
nd Könemann’s framework provides a fast and simple solution to it.
ased on the TEG 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤) with the set 𝑉𝑚 of all source c-terminals,

each terminal source 𝑣𝑖(𝑡0) has its own task 𝑞𝑖 to deliver, which can be
pitted into a set of tasks. In this paper, this algorithm needs to search
ask offloading paths 𝑃𝑖 for each terminal under the energy and capacity
onstraints to maximize the overall utility while minimizing the costs.
otice that each source c-terminal may find more than one path to v𝑣.

Let 𝑃𝑖 represent the path set of the c-terminal 𝑣𝑖(𝑡0) in 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤) and
𝑃 = ∪𝑣𝑖(𝑡0)∈𝑉𝑚𝑃𝑖. Let 𝑓𝑝 represent the task load on path 𝑝, 𝑝 ∈ 𝑃 , to
ndicate the load contained in the splittable task. The MCF problem
an be shown by 3, as shown below.

3 ∶ Original problem Dual problem
max

∑

𝜆 𝑄(𝑙) ≜ min
∑

𝑒∈𝐸𝛤
𝑙(𝑒)𝑐(𝑒)

.𝑡.
∑

𝑒∈𝑝𝑖

𝑓𝑝 ≤ 𝑐(𝑒),∀𝑒 ∈ 𝐸𝛤 ; 𝑠.𝑡.
∑

𝑒∈𝑝
𝑙(𝑒) ≥ 𝑧𝑖, ∀𝑝 ∈ 𝑃𝑖;

∑

𝑝∈𝑃𝑖

𝑓𝑝 ≥ 𝜆𝑞𝑖,∀𝑣𝑖(𝑡0) ∈ 𝑉𝑚;
𝐾
∑

𝑖=1
𝑞𝑖 ⋅ 𝑧𝑖 ≥ 1;

𝑓𝑝 ≥ 0,∀𝑝 ∈ 𝑃 . 𝑙(𝑒) ≥ 0,∀𝑒 ∈ 𝐸𝛤 .

he way to construct the dual problem of 3 is given as follows. Define
(𝑒) for each edge 𝑒 ∈ 𝐸𝛤 which represents the length function of
he edge, and define a positive throughput parameter 𝑧𝑖 for c-terminal
7

𝑖(𝑡0). Ensure that the length of each path in 𝑃𝑖 is not less than 𝑧𝑖. The
otal amount of the product of throughput parameter 𝑧𝑖 and demand 𝑞𝑖
s not less than 1. Minimize the objective function ∑

𝑒∈𝐸𝛤 𝑙(𝑒)𝑐(𝑒) of the
ual problem. An approximation algorithm for 3 [26] is proposed by
arg and Könemann.

The detailed procedure of Garg and Könemann algorithm is pre-
ented as below. Initially, 𝑓 = 0, ∀𝑣𝑖(𝑡0) ∈ 𝑉𝑚 and 𝑙(𝑒) = 𝜉

𝑐(𝑒) , ∀𝑒 ∈ 𝐸𝛤 ,
and 𝜉 = ((1 − 𝜍)∕|𝐸𝛤 |)1∕𝜍 is a small value with the previously given
onstant 𝜍 < 1, which means that no task is delivered. The algorithm
uns in multiple stages, and each stage contains multiple iterations.
n each iteration, it needs to deliver 𝑞𝑖 units of tasks for the source
-terminal 𝑣𝑖(𝑡0). First, use the edge length function 𝑙(𝑒) to find the
urrent shortest path 𝑝𝑖 from 𝑣𝑖(𝑡0) to v𝑣, where the parameter 𝑒 is one of
1-edge, 𝑠2-edge and c-edge. Then, find the bottleneck load 𝑓𝑏 through
ath 𝑝𝑖. Determine the size 𝑓𝑖 of the task as the minimum between 𝑓𝑏
nd the remaining demand 𝑞′𝑖 of the terminal 𝑣𝑖(𝑡0), i.e., 𝑓𝑖 = min{𝑓𝑏, 𝑞′𝑖}.
f 𝑓𝑏 > 0, the length function 𝑙(𝑒) is multiplied by 1 + 𝜍 𝑓𝑖

𝑐(𝑒) and then
obtain the shortest path in 𝑃𝑖, denote it by 𝑧𝑖, 𝑧𝑖 = min𝑝𝑗∈𝑃𝑖 𝑙(𝑝𝑗). Use
he length function 𝑙(𝑒) to represent the shortest path from 𝑣𝑖(𝑡0) to v𝑣,

which is represented by 𝑙𝑖𝑚𝑖𝑛. Let 𝛼(𝑙) = ∑𝐾
𝑖=1 𝑞𝑖𝑧𝑖 for all source c-terminal

in 𝑉𝑚. So minimizing 𝑄(𝑙) under the dual constraints is equivalent to
minimizing 𝛽 ≜ min𝑙 𝑄(𝑙)∕𝛼(𝑙) by calculating the length 𝑙(𝑒) for each
dge. When the target value is not less than 1, the algorithm stops
nder the specific conditions given in the following lemma, namely
(𝑙) ≥ 1 and 𝛽 ≥ 1. When 𝛽 < 1, Fleischer et al. raise a standard
rocedure to convert it to 𝛽 ≥ 1 [46]. It is worth noting that the final
ask load obtained through the above process may overflow on some
dges in the path. Therefore, in order to obtain a feasible solution,
t is necessary to cut down the final size 𝑓 of the edge exceeding
he capacity to the maximum 𝑓𝑚. When the path length is less than
, the algorithm increases the throughput, and when the throughput
verflows, the algorithm guarantees that the length of the edge grows
xponentially. Therefore, it follows from the following theorem that the
aximum throughput on the path is not large.

emma 2 (see [26]). The size of the flow acquired through the above
rocedure is denoted by 𝑓 , and it is reduced by log1+𝜍

1
𝜉 . The final size

then is feasible.

Lemma 3 (see [26]). If 𝛽 ≥ 1, |𝑓 |
log1+𝜍

1
𝜉
≥ (1−3𝜍)𝑂𝑃𝑇 , 𝜍 is a constant and

OPT represents the size of the optimal flow.

Lemma 4 (see [26]). For any 𝜍 > 0, there exists a way to calculate
the approximate value of (1 − 3𝜍) for the MCF problem within the time
complexity of 𝑂(𝐾(𝑚𝑁𝜉)2).

2 Transformation. Using the above-mentioned network flow, the
hroughput-related path is expressed as a network flow problem, and 2
an be converted into an MCF problem. For each source c-terminal 𝑣𝑖(𝑡0)
n the TEG, the throughput of the path from 𝑣𝑖(𝑡0) to v𝑣 is represented by
he flow 𝑓𝑖. Each flow ensures that constraint constraints (6) and (15)
re established. The solution of 2 is equal to finding a suitable flow
ath in TEG for all the tasks of all source c-terminals. In this section,
2 is transformed into the maximum multi-commodity flow problem
f linear programming. Let 𝑃𝑖 denote all possible task offloading paths
elated to the task in each source c-terminal 𝑣𝑖(𝑡0), and 𝑃 denote the
nion of all path sets, that is, 𝑃 = ∪𝑣𝑖(𝑡0)∈𝑉𝑚𝑃𝑖. The problem 2 becomes
he following formula.

4 ∶max 𝜆

𝑠.𝑡.
∑

𝑝∈𝑃𝑖

𝑓𝑝 ≥ 𝜆𝑞𝑖, ∀𝑣𝑖(𝑡0) ∈ 𝑉𝑚;

Constraints (6) and (15);

𝑓 ⩾ 0, ∀𝑓 ∈ 𝑃𝑖, 𝑣𝑖(𝑡0) ∈ 𝑉𝑚.

Computer Networks 214 (2022) 109164J. Wang et al.

i
K
c
o


e
m
s

d

c
t
e

O
l

1
1
1
1

1

1

1

1

1

2

T
𝑀
a

7

f
e
o
a
p

7

d

6.2. Networked energy allocation

Solving the maximum multi-commodity flow problem 4 directly
s quite complicated. This paper adopts the framework of Garg and
önemann [26] and regards TEG as a directed graph with its own
apacity for each edge. This section does not directly solve the solution
f the original problem 3, but finds the solution of the dual problem of
4 and designs a fast approximation algorithm MT. For any path 𝑝𝑖, the

throughput of multiple edges 𝑒 ∈ 𝑝𝑖 on it is not only constrained by (15)
but also affected by the energy consumption of its receiver in the time
slot 𝜏 and that of its transmitter in the time slot 𝜏 +1 when considering
the available energy for transceiving. Recalling the above statement, we
can know that c-edge does not need to consume energy. Suppose that
the available throughput is 𝑓 ′ under the energy constraints of Eq. (6).
Replace 𝑓 ′ in 4 with 𝑓 , the constraint (6) can be omitted, and an
equivalent problem is obtained, denoted as  ′

4. Therefore, the  ′
4 and

the dual problem of 3 are the same types of problem.
We can easily know that the dual problem of 3 is NP-hard, so an ap-

proximate algorithm MT is designed for it to obtain an approximate so-
lution in polynomial time. Approximation algorithms for optimization
problems usually use the approximation ratio for theoretical evaluation.
𝐴𝑝𝑝𝑟𝑜 and 𝑂𝑝𝑡 are used to represent the approximation of the problem
and the theoretical performance of the optimization algorithm. For the
maximization problem, the approximation ratio 𝜌 satisfies 𝐴𝑝𝑝𝑟𝑜

𝑂𝑝𝑡 ≥ 𝜌,
and for the minimization problem, the approximation ratio 𝜌 satisfies
𝐴𝑝𝑝𝑟𝑜
𝑂𝑝𝑡 ≤ 𝜌.

The idea of 3’s dual MT algorithm is to iteratively find the shortest
path at the c-terminal of each source. Under the limitation of available
nergy and wireless interference, the available throughput is deter-
ined through the edge of the path. The MT algorithm includes three

teps. In the first step, use the Dijkstra algorithm to find the shortest
path of each source c-terminal from the set 𝐹 . Secondly, it allocates
energy for the shortest path to find the available throughput, and
determines the final throughput in the dual problem of 3 under the
given constraints. Finally, the remaining energy of the c-node in the
shortest path is updated, as are the capacity and length of the edges.
At the same time, it is also necessary to update the edges interfered
by the edges on the shortest path. These three steps are repeated
iteratively until all source c-terminals meet the requirements or 𝑄(𝑙) ≜
min

∑

𝑒∈𝐸𝑐 𝑐
′(𝑒)𝑙(𝑒) ≥ 1. Algorithm 3 describes the details of MT in

etail.
It can be seen from the 17th step of Algorithm 3 that the set 𝐼 ′𝑒∶𝑒∈𝑝𝑖

ontains the edges interfered by the wireless interference model 𝐼 on
he path 𝑝𝑖, and the available throughput of these edges is reduced. For
xample, assume that the 𝑠1-edge 𝑒25 ∶ 𝑣2(𝑡0) → 𝑣5(𝑡1) interferes with

the edge 𝑒35 ∶ 𝑣3(𝑡0) → 𝑣5(𝑡1) and the throughput on 𝑒25 is 𝑓𝑒25 in Fig. 2.
The available throughput of 𝑒35 takes the larger value between 𝑐(𝑒35) −
𝑓𝑒25 and 0. Next, this section goes through a complete flow in Fig. 2 to
illustrate the mechanism of Algorithm 3. After initializing the length of
all 𝑠1-edges, assume that the path 𝑝1 is the shortest path from the source
𝑣2(𝑡0) to the target v𝑣. The algorithm MT calculates the available energy
of all c-nodes on the path 𝑝1 through the energy distribution method
given in Algorithm 1 and then calculates the available throughput of
each 𝑠1-edge on the path 𝑝1. It can be found that the bottleneck capacity
of 𝑝1 is 𝑓 ′(𝑝1), and the increased throughput 𝛥𝑓 ′(𝑝1) from 𝑣2(𝑡0) to v𝑣
can be calculated. It is worth noting that the length of each 𝑠1-edge
on the path 𝑝1 and the length of the edge interfered by it need to be
updated at the same time, for example, 𝑒35 ∶ 𝑣3(𝑡0) → 𝑣5(𝑡1). Under the
constraints of the wireless interference model 𝐼 , update the maximum
available capacity of the edges interfered by the edges on 𝑝1, all of
which are obtained in the set 𝐼 ′𝑒∶𝑒∈𝑝𝑖 . Increase 𝑄 by 𝜍 ⋅ 𝛥𝑓

′
𝑖

𝑐(𝑒) and decrease
the demand 𝑞𝑖 for the source c-terminal 𝑣𝑖 through interval 𝛥𝑓 ′

𝑖 . MT
repeats above the process until 𝑄 ≥ 1.

According to Ref. [26], the time complexity of the algorithm pro-
posed by the Garg and Könemann is 𝑂(𝜍−2𝑘𝑚 log𝐿 ⋅ 𝑇), where 𝑇
8

𝑠𝑝 𝑠𝑝 a
Algorithm 3 MT
Input: 𝐺𝛤 (𝑉 𝛤 , 𝐸𝛤); 𝑞 for each terminal and 𝑓 = 0.
utput: All source c-terminals tasks offload throughput

oad.
1: for each source c-terminal 𝑣𝑖(𝑡0) ∈ 𝑉𝑚 do
2: Set the throughput 𝑓𝑖 of each source c-terminal to 0, and assign

a demand value 𝑞𝑖 for each source c-terminal, where 𝑞𝑖 > 0;
3: end for
4: 𝑄 = 0; 𝜉 = (1−𝜍

|𝐸𝛤 |)
1∕𝜍 ;

5: for each edge 𝑒 ∈ 𝐸𝛤 do
6: 𝑙(𝑒) = 𝜉

𝑐(𝑒) ; 𝑄+ = 𝑙(𝑒) ⋅ 𝑐(𝑒);
7: end for
8: Set a temporary variable 𝑞′ to represent the requirements of each

source c-terminal 𝑣𝑖(𝑡0).
9: while 𝑄 < 1 do
0: for each 𝑣𝑖(𝑡0) ∈ 𝑉𝑚 do
1: if 𝑞′𝑖 ≠ 0 then
2: Set 𝑞′𝑖 = 𝑞𝑖; /*𝑞′𝑖 is the remaining demand of 𝑣𝑖(𝑡0)*/
3: Use the length function 𝑙(⋅) to search for the shortest path 𝑝𝑖

from each source c-terminal 𝑣𝑖(𝑡0) to v𝑣 in the 𝐺𝛤 ;
4: Configure energy for each c-node on path 𝑝𝑖 according to

algorithm 1 and get the real throughput 𝑓 ′
𝑒 of each 𝑒;

5: Search the practicable capacity threshold 𝑓 ′
𝑖 (𝑒

′) of 𝑒′ on path
𝑝𝑖, and set 𝑓 ′

𝑝𝑖
← 𝑓 ′

𝑖 (𝑒
′), where 𝑒′ ∈ 𝑝𝑖;

6: Add practicable throughput to each source c-terminal 𝑣𝑖(𝑡0):
𝛥𝑓 ′

𝑖 ← min{𝑓 ′
𝑖 (𝑒), 𝑞

′
𝑖};

7: for any edge 𝑒 ∈ 𝑝𝑖 ∪ 𝐼 ′𝑒∶𝑒∈𝑝𝑖 do

8: 𝑙(𝑒) ∗= (1 + 𝜍 ⋅
𝛥𝑓 ′𝑖
𝑐(𝑒)); 𝑄+ = 𝜍 ⋅

𝛥𝑓 ′𝑖
𝑐(𝑒) ; 𝑞

′
𝑖− = 𝛥𝑓 ′

𝑖 ;
19: end for
20: end if
21: end for
22: end while
23: for each source c-terminal 𝑣𝑖(𝑡0) ∈ 𝑉𝑚 do
4: 𝑓 ′

𝑖 = 𝑓 ′
𝑖 |𝜏|∕ log1+𝜍

1+𝜍
𝜉 ; /*throughput scaling*/

25: end for

represents the time needed to find the shortest path from the source ter-
minal to the destination in the graph with non-negative edge weights,
and 𝐿 represents the maximum value of the sum of the number of edges
of any path from the source terminal to the destination. In this paper,
the theoretical performance of algorithm 3 is obtained by using the
existing results. According to Claim 1 and Lemmas 2, 3, 4, the following
theorem can be obtained. The number of c-nodes and the corresponding
number of edges in TEG are (𝑚 + 1)𝑀 and 𝑚(𝑁 +𝑀) respectively.

heorem 5. The time complexity of the algorithm MT is 𝑂(𝜍−2𝑘𝑚2(𝑁 +
)2 log𝑚 log[(𝑚+1)𝑀]) in the TEG, and an approximate solution with an
pproximate ratio of 1 − 3𝜍 is designed, 0 < 𝜍 ≤ 1∕3.

. Evaluation

This section conducts two experimental cases to evaluate the per-
ormance of our proposed algorithms. In the first case, the number of
dge servers is fixed to evaluate the impact on the number of terminals
n the algorithm performance. The second case verifies the effect on
lgorithm performance when the number of edge servers increases in
roportion to the number of terminals.

.1. Simulation setting

Simulation scenarios. This paper conducts experiments in two
ifferent scenarios. In the first case, a relatively simple setting is
dopted, in which the number of terminals increases from 10 to 120

Computer Networks 214 (2022) 109164J. Wang et al.

a
c
v
5
n
t
d
a
a
t
t
c
p
t

d

Table 2
Experimental parameters in simulation.

Parameters Values

Experiment range 1000*1000
The amount of cloud servers 1
The amount of edge servers in first case 3
The amount of IoT terminals in first case [10,120]
The ratio of edge servers and IoT terminals in
second case

1/10

The amount of IoT terminals in first case in
second case

[10,50]

The communication range of edge servers 200
The communication range of IoT terminals 100
The wireless interference range of IoT terminals 150
The average of harvested energy of IoT terminals [30, 150]
The variance of harvested energy of IoT terminals [5, 30]
Transmission link quality [0.5, 0.95]

Fig. 3. Throughput under the different parameters.

nd the interval increases by 10, while the number of edge servers and
loud servers are fixed at 3 and 1 respectively, and the average and
ariance are set as the values between 30 and 250 and those between
and 30. The energy collected in each time slot is obtained by the

ormal distribution. The second case considers a more complex situa-
ion, in which the number of edge servers varied as the IoT terminals
ynamically, the terminals increase from 10 to 50, the interval 10,
nd the average and variance are 30–150 and 5–30, with interval 10
nd 5, respectively. In ST and three basic algorithms, there is only one
erminal. In MT, the numbers of terminals are randomly selected from
he interval [2,𝑀∕2] and the MT curve is the average value of the
orresponding performance indicators of each terminal. The simulation
rograms of the two cases of experiments are running 100 times each
o make the results more stable.
Parameter setting. This paper conducts extensive simulation with

ifferent numbers of nodes deployed in a 1000 × 1000 square area [47,
48]. It includes IoT terminals, edge servers and cloud servers, which are
evenly distributed over the range. The number of cloud servers is set
as 1, which can connect all edge servers. The transceiving range of the
terminal node is set as 100 and the interference distance is set as 150.
Since both the transceiving power and transmission link quality are
time-varying, the simulation program randomly generates correspond-
ing values within a certain range. So is the conversion efficiency of the
harvested energy in each time slot. The main experimental parameters
in the simulation are summarized in Table 2.

To comprehensively evaluate our proposed algorithm, this paper
leverages three basic methods to make comparisons with our ST and
MT methods.

1. Edge Offloading(EO): The user offloads all tasks to the edge
server. Assume that the network channel condition is optimal
and transceiving powers are static.

2. Cloud Offloading(CO): The user handles all tasks in the cloud,
with other settings the same as EO.

3. Stochastic Offloading(SO): The user chooses to randomly offload
tasks to edge servers or cloud servers. In this experimental
setting, 50% of tasks are offloaded to edge servers and 50% to
9

cloud servers respectively.
Fig. 4. Energy consumption per unit throughput under the different parameters.

Fig. 5. Throughput per unit time under the different parameters.

Fig. 6. Demand completion ratio under the different parameters.

7.2. Performance results

This subsection presents our proposed ST and MT and three basic
algorithms under different parameter settings in terms of throughput,
energy consumption per unit throughput, throughput per unit time, and
utility.

Since this paper sets demand for each c-terminal in algorithm
MT, this section can evaluate the average demand completion rate of
terminals. In the TEG, the transmission time of the offloaded task can
be calculated by Eq. (7), and the computing time of the task can be
obtained by Eq. (8). The utility value adopts multiple criteria decision
making and simple additive weighting method, where throughput is
taken as the positive standard and execution time is the negative
standard [49].

This section evaluates the performance of Algorithm ST and MT in
comparison to three basic algorithms based on the simulated task of
the first experimental case as shown in Fig. 3 to Fig. 8.

Throughput. Fig. 3 shows that the impact on throughput as the
number of terminals, the average of the harvested energy, and the vari-
ance of the harvested energy. In the first subgraph, the throughput of
both ST and three basic algorithms tends to be stable with the increase
of terminals. However, with the increase of terminals, the average
throughput of MT gradually decreases due to more interference. The
last two subgraphs show that the throughput of ST and MT as well as
the three basic algorithms tend to be stable as the average increases. In
addition, variance has no effect on throughput.

Computer Networks 214 (2022) 109164J. Wang et al.

o
t
s
t
v

t
t
o
a

a
b
t
i
t
s
t

N
c
r
o
o
h
m
c
a
t

c
o

b
w
o
a
t
b

Fig. 7. Utility under the different parameters.

Fig. 8. Running time under the different parameters.

Fig. 9. Throughput under the different parameters.

Energy consumption per unit throughput. In Fig. 4, it is obvious
that ST and MT perform better than the three basic algorithms in terms
of energy consumption per unit throughput, while MT is slightly better
than ST. The increase in the number of nodes, the average value and
variance of harvested energy have little effect on energy consumption
per unit of throughput.

Throughput per unit time. It can be seen from Fig. 5 that in terms
f throughput per unit time, ST and MT are significantly higher than
he three basic algorithms, while MT is slightly better than ST. At the
ame time, changes in the three independent variables, the number of
erminals, the average and the variance of harvested energy, have not
ery obvious effects on the throughput per unit time.
Average demand completion ratio. The average demand comple-

ion ratio plotted in Fig. 6 is the percentage of tasks that are offloaded
hrough MT in a given number of tasks. It decreases as the number
f terminals increases and increases as the average value increases. In
ddition, variance has little effect on it.
Utility. According to the analysis in Fig. 7, the utility value of ST

nd MT under the influence of the three parameters is significantly
etter than that of the three basic algorithms. In the first subgraph,
he utility of MT increases slightly with the increase of terminals. This
s because the simultaneous offloading of multiple terminals reduces
he average time cost. In the second subgraph, the utility of ST rises
lightly after fluctuating, as energy increases, ST tries its best to offload
asks to maximize throughput. At the same time, MT is affected by the
10

c

Fig. 10. Energy consumption per unit throughput under the different parameters.

Fig. 11. Throughput per unit time under the different parameters.

Fig. 12. Demand completion ratio under the different parameters.

demand value of terminals, and its utility drops slightly. The variance
has a small effect on their utility.

Running Time. Fig. 8 shows the running time of all algorithms.
ote that this experiment runs under single thread on Apple M1 Pro
hip in the MacBook Pro 2021 laptop. The running time of all algo-
ithms is positively correlated to the number of nodes and independent
f energy average and variance, which is consistent with our analysis
n the time complexity of the algorithm ST, MT. It is obvious that ST
as similar running time to other three algorithms while MT consumes
ore time, but also in millisecond level. This is because the time

omplexity of ST is proportional to the sum of the number of edges
nd nodes, while MT is proportional to the polynomial of the sum of
hem approximately, as analyzed above.

This section evaluates the performance of Algorithm ST and MT in
omparison to the three basic algorithms based on the simulated data
f the second experimental case as shown in Fig. 9 to Fig. 14.
Throughput. In Fig. 9, the results show that the ST is significantly

etter than the other four algorithms and the growth trend is obvious
ith the number of terminals and the average of the harvested energy
n throughput. Meanwhile, the MT is better than the three basic
lgorithms but the growth trend is slow, mainly because the average
hroughput of multiple terminals is obtained and there is interference
etween multiple terminals.
Energy consumption per unit throughput. In Fig. 10, the energy

onsumption per unit throughput of ST and MT is significantly lower

Computer Networks 214 (2022) 109164J. Wang et al.

t
d
i
t
i
s
c
o

t
i
t
t
t

Fig. 13. Utility under the different parameters.

Fig. 14. Running Time under the different parameters.

han that of the three basic algorithms under the influence of three
ifferent factors, while MT is slightly better than ST. The main reason
s that multiple terminals in MT can amortize the energy cost per unit
hroughput. In the first subgraph, although the number of terminals
ncreases, the energy consumption per unit throughput of ST increases
lightly because the current terminal node chooses some edge servers or
loud servers with large energy consumption to offload in the process
f maximizing throughput.
Throughput per unit time. In Fig. 11, the overall trend shows that

he throughput per unit time of MT is superior to that of ST, while MT
s superior to the three basic algorithms. With the increase of terminals,
he throughput per unit time of ST and MT gradually decreases, while
he average and variance of the harvested energy have no effect on
hem.
Average demand completion ratio. Fig. 12 shows that as the

number of terminals increases, the average demand completion ratio
of multiple terminals increases. The difference from Fig. 6 is that the
number of edge servers increases as the number of terminals increases
in this case so that the terminals can offload tasks more effectively
and increase the average demand completion rate. The average and
variance of harvested energy are similar to Fig. 6.

Utility. Fig. 13 shows the utility of the three algorithms. Among
them, with the increase of the number of nodes and the average value
of collected energy, the utility of ST and MT fluctuate slightly, which
is different from the obvious upward or downward trend in Fig. 13,
indicating that the simultaneous growth of terminals and edge servers
can enable each terminal node to get a better offloading of tasks. The
situation of the three basic algorithms is the same as that in Fig. 7. The
variance of harvested energy has little effect on them.

Running Time. Fig. 14 shows the running time of all algorithms
on Apple M1 Pro chip. Although the number of edge servers is varied
in this case, the trend of running time of all algorithms is similar to
the fixed edge servers case. The running time at the millisecond level
makes the algorithms practical in real-world applicability.

8. Conclusion

This paper investigates the splittable task offloading utility maxi-
mization in complicated time-varying network and wireless interfer-
ence environments. We introduce a feasible scheme named TEG to
character dynamic factors in the process of task offloading. For a single
11
IoT terminal and multiple IoT terminal task offloading, this paper
respectively devises practical algorithms based on TEG called ST and
MT, which endeavor IoT terminal task offloading utility maximization
under the constraint of the surplus energy. This paper provides a
mathematics analysis to demonstrate the time complexity of ST and MT,
guarantee algorithm gains the feasible solution and the approximate
solution respectively. This paper considers task offloading in offline
scenarios. In order to be closer to the online scenario, our next step is
to study the online terminal task offloading on the basis of this paper.

CRediT authorship contribution statement

Jiacheng Wang: Writing – review & editing, Software, Valida-
tion, Visualization, Investigation. Jianhui Zhang: Conceptualization,
Methodology, Writing – original draft, Writing – review & editing,
Funding acquisition. Liming Liu: Writing – original draft, Software,
Validation, Visualization. Xuzhao Zheng: Validation, Investigation.
Hanxiang Wang: Visualization, Investigation. Zhigang Gao: Supervi-
sion, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by the National Key R&D Program of China
under No. 2021YFC3320301, the National Natural Science Foundation
of China under No. 61877015.

References

[1] W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, X. Yang, A survey on the
edge computing for the Internet of Things, IEEE Access 6 (2018) 6900–6919,
http://dx.doi.org/10.1109/ACCESS.2017.2778504.

[2] J. Lin, L. Huang, H. Zhang, X. Yang, P. Zhao, A novel latency-guaranteed based
resource double auction for market-oriented edge computing, Comput. Netw. 189
(2021) 107873, http://dx.doi.org/10.1016/j.comnet.2021.107873, URL https://
www.sciencedirect.com/science/article/pii/S1389128621000426.

[3] F. Mashhadi, S.A.S. Monroy, A. Bozorgchenani, D. Tarchi, Optimal auction for
delay and energy constrained task offloading in mobile edge computing, Comput.
Netw. 183 (2020) 107527, http://dx.doi.org/10.1016/j.comnet.2020.107527,
URL https://www.sciencedirect.com/science/article/pii/S1389128620311841.

[4] J. Zhang, W. Zhang, J. Wang, J. Feng, Z. Gao, S. Zheng, Rechargeable
battery cabinet deployment for public bike system, IEEE Transactions on Intelli-
gent Transportation Systems (2022) 1–14, http://dx.doi.org/10.1109/TITS.2022.
3180079.

[5] S. Dong, H. Li, Y. Q.U., Z. Zhang, H. Lei, Survey of research on computation
unloading strategy in mobile edge computing, Comput. Sci. 046 (11) (2019)
32–40.

[6] X. Shen, X. Shao, Q. Ge, L. Liu, RARS: recognition of audio recording source
based on residual neural network, IEEE ACM Trans. Audio Speech Lang. Process.
29 (2021) 575–584, http://dx.doi.org/10.1109/TASLP.2020.3039597.

[7] K. Kumar, J. Liu, Y. Lu, B.K. Bhargava, A survey of computation offloading for
mobile systems, Mob. Netw. Appl. 18 (1) (2013) 129–140, http://dx.doi.org/10.
1007/s11036-012-0368-0.

[8] X. Hu, K. Wong, K. Yang, Wireless powered cooperation-assisted mobile edge
computing, IEEE Trans. Wirel. Commun. 17 (4) (2018) 2375–2388, http://dx.
doi.org/10.1109/TWC.2018.2794345.

[9] J. Wang, J. Hu, G. Min, A.Y. Zomaya, N. Georgalas, Fast adaptive task offloading
in edge computing based on meta reinforcement learning, IEEE Trans. Parall.
Distrib. Syst. 32 (1) (2021) 242–253, http://dx.doi.org/10.1109/TPDS.2020.
3014896.

[10] L. Wang, G. von Laszewski, A.J. Younge, X. He, M. Kunze, J. Tao, C. Fu, Cloud
computing: a perspective study, New Gener. Comput. 28 (2) (2010) 137–146,
http://dx.doi.org/10.1007/s00354-008-0081-5.

http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1016/j.comnet.2021.107873
https://www.sciencedirect.com/science/article/pii/S1389128621000426
https://www.sciencedirect.com/science/article/pii/S1389128621000426
https://www.sciencedirect.com/science/article/pii/S1389128621000426
http://dx.doi.org/10.1016/j.comnet.2020.107527
https://www.sciencedirect.com/science/article/pii/S1389128620311841
http://dx.doi.org/10.1109/TITS.2022.3180079
http://dx.doi.org/10.1109/TITS.2022.3180079
http://dx.doi.org/10.1109/TITS.2022.3180079
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb5
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb5
http://dx.doi.org/10.1109/TASLP.2020.3039597
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1109/TWC.2018.2794345
http://dx.doi.org/10.1109/TWC.2018.2794345
http://dx.doi.org/10.1109/TWC.2018.2794345
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1007/s00354-008-0081-5

Computer Networks 214 (2022) 109164J. Wang et al.
[11] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos, A.
Leivadeas, N. Athanasopoulos, N. Mitton, S. Papavassiliou, Task offloading in
edge and cloud computing: A survey on mathematical, artificial intelligence
and control theory solutions, Comput. Netw. 195 (2021) 108177, http://
dx.doi.org/10.1016/j.comnet.2021.108177, URL https://www.sciencedirect.com/
science/article/pii/S1389128621002322.

[12] B. Hayes, Cloud computing, Commun. ACM 51 (7) (2008) 9–11, http://dx.doi.
org/10.1145/1364782.1364786.

[13] L. Liu, Z. Chang, X. Guo, S. Mao, T. Ristaniemi, Multiobjective optimization for
computation offloading in fog computing, IEEE Internet Things J. 5 (1) (2018)
283–294, http://dx.doi.org/10.1109/JIOT.2017.2780236.

[14] W. Fan, J. Han, L. Yao, F. Wu, Y. Liu, Latency-energy optimization for joint WiFi
and cellular offloading in mobile edge computing networks, Comput. Netw. 181
(2020) 107570, http://dx.doi.org/10.1016/j.comnet.2020.107570, URL https://
www.sciencedirect.com/science/article/pii/S1389128620312159.

[15] W. Hou, W. Li, L. Guo, Y. Sun, X. Cai, Recycling edge devices in sustainable
Internet of Things networks, IEEE Internet Things J. 4 (5) (2017) 1696–1706,
http://dx.doi.org/10.1109/JIOT.2017.2727098.

[16] Y. Chen, Z. Liu, Y. Zhang, Y. Wu, X. Chen, L. Zhao, Deep reinforcement
learning-based dynamic resource management for mobile edge computing in
industrial Internet of Things, IEEE Trans. Ind. Inf. 17 (7) (2021) 4925–4934,
http://dx.doi.org/10.1109/TII.2020.3028963.

[17] K. Cao, L. Li, Y. Cui, T. Wei, S. Hu, Exploring placement of heterogeneous
edge servers for response time minimization in mobile edge-cloud computing,
IEEE Trans. Ind. Inf. 17 (1) (2021) 494–503, http://dx.doi.org/10.1109/TII.2020.
2975897.

[18] Y. Guo, Z. Zhao, K. He, S. Lai, J. Xia, L. Fan, Efficient and flexible management
for industrial Internet of Things: A federated learning approach, Comput.
Netw. 192 (2021) 108122, http://dx.doi.org/10.1016/j.comnet.2021.108122,
URL https://www.sciencedirect.com/science/article/pii/S1389128621001961.

[19] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. Tutor. 19 (4)
(2017) 2322–2358, http://dx.doi.org/10.1109/COMST.2017.2745201.

[20] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628–1656,
http://dx.doi.org/10.1109/COMST.2017.2682318.

[21] X. Jiang, F.R. Yu, T. Song, V.C.M. Leung, A survey on multi-access edge
computing applied to video streaming: Some research issues and challenges,
IEEE Commun. Surv. Tutor. 23 (2) (2021) 871–903, http://dx.doi.org/10.1109/
COMST.2021.3065237.

[22] B. Xiang, J. Elias, F. Martignon, E. Di Nitto, Resource calendaring for mobile
edge computing: Centralized and decentralized optimization approaches, Comput.
Netw. 199 (2021) 108426, http://dx.doi.org/10.1016/j.comnet.2021.108426,
URL https://www.sciencedirect.com/science/article/pii/S138912862100390X.

[23] B. Ahat, A.C. Baktir, N. Aras, I. Altinel, A. Özgövde, C. Ersoy, Optimal server
and service deployment for multi-tier edge cloud computing, Comput. Netw. 199
(2021) 108393, http://dx.doi.org/10.1016/j.comnet.2021.108393, URL https://
www.sciencedirect.com/science/article/pii/S1389128621003716.

[24] A.S. Tan, E. Zeydan, Performance maximization of network assisted mobile
data offloading with opportunistic device-to-device communications, Comput.
Netw. 141 (2018) 31–43, http://dx.doi.org/10.1016/j.comnet.2018.05.011, URL
https://www.sciencedirect.com/science/article/pii/S1389128618302214.

[25] Y. Su, W. Fan, Y. Liu, F. Wu, Game-based distributed pricing and task
offloading in multi-cloud and multi-edge environments, Comput. Netw. 200
(2021) 108523, http://dx.doi.org/10.1016/j.comnet.2021.108523, URL https://
www.sciencedirect.com/science/article/pii/S1389128621004539.

[26] N. Garg, J. Köenemann, Faster and simpler algorithms for multicommodity flow
and other fractional packing problems, in: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, FOCS, IEEE Computer Society,
Washington, DC, USA, 1998, pp. 300–339.

[27] J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for mobile
edge computing in dense networks, in: 2018 IEEE Conference on Computer
Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, IEEE,
2018, pp. 207–215, http://dx.doi.org/10.1109/INFOCOM.2018.8485977.

[28] X. Xu, Y. Li, T. Huang, Y. Xue, K. Peng, L. Qi, W. Dou, An energy-aware com-
putation offloading method for smart edge computing in wireless metropolitan
area networks, J. Netw. Comput. Appl. 133 (2019) 75–85, http://dx.doi.org/10.
1016/j.jnca.2019.02.008.

[29] S. Guo, B. Xiao, Y. Yang, Y. Yang, Energy-efficient dynamic offloading and
resource scheduling in mobile cloud computing, in: IEEE INFOCOM 2016 - the
35th Annual IEEE International Conference on Computer Communications, 2016,
pp. 1–9, http://dx.doi.org/10.1109/INFOCOM.2016.7524497.

[30] F. Wang, J. Xu, S. Cui, Optimal energy allocation and task offloading policy for
wireless powered mobile edge computing systems, IEEE Trans. Wirel. Commun.
19 (4) (2020) 2443–2459, http://dx.doi.org/10.1109/TWC.2020.2964765.

[31] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, F. Tian, Dynamic task offloading
and resource allocation for mobile-edge computing in dense cloud RAN, IEEE
Internet Things J. 7 (4) (2020) 3282–3299, http://dx.doi.org/10.1109/JIOT.
2020.2967502.
12
[32] F. Guo, H. Zhang, H. Ji, X. Li, V.C.M. Leung, An efficient computation offloading
management scheme in the densely deployed small cell networks with mobile
edge computing, IEEE/ACM Trans. Netw. 26 (6) (2018) 2651–2664, http://dx.
doi.org/10.1109/TNET.2018.2873002.

[33] Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng, Multi-hop cooperative com-
putation offloading for industrial IoT-edge-cloud computing environments, IEEE
Trans. Parall. Distrib. Syst. 30 (12) (2019) 2759–2774, http://dx.doi.org/10.
1109/TPDS.2019.2926979.

[34] C. Funai, C. Tapparello, W.B. Heinzelman, Computational offloading for en-
ergy constrained devices in multi-hop cooperative networks, IEEE Trans. Mob.
Comput. 19 (1) (2020) 60–73, http://dx.doi.org/10.1109/TMC.2019.2892100.

[35] C. Shu, Z. Zhao, Y. Han, G. Min, H. Duan, Multi-user offloading for edge
computing networks: A dependency-aware and latency-optimal approach, IEEE
Internet Things J. 7 (3) (2020) 1678–1689, http://dx.doi.org/10.1109/JIOT.
2019.2943373.

[36] F. Wang, J. Xu, Z. Ding, Multi-antenna NOMA for computation offloading in
multiuser mobile edge computing systems, IEEE Trans. Commun. 67 (3) (2019)
2450–2463, http://dx.doi.org/10.1109/TCOMM.2018.2881725.

[37] P.A. Apostolopoulos, E. Tsiropoulou, S. Papavassiliou, Risk-aware data of-
floading in multi-server multi-access edge computing environment, IEEE/ACM
Trans. Netw. 28 (3) (2020) 1405–1418, http://dx.doi.org/10.1109/TNET.2020.
2983119.

[38] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, Q. Zhu, Deep-
reinforcement-learning-based offloading scheduling for vehicular edge comput-
ing, IEEE Internet Things J. 7 (6) (2020) 5449–5465, http://dx.doi.org/10.1109/
JIOT.2020.2978830.

[39] Y. Chen, N. Zhang, Y. Zhang, X. Chen, Dynamic computation offloading in
edge computing for Internet of Things, IEEE Internet Things J. 6 (3) (2019)
4242–4251, http://dx.doi.org/10.1109/JIOT.2018.2875715.

[40] X. He, R. Jin, H. Dai, Peace: Privacy-preserving and cost-efficient task offload-
ing for mobile-edge computing, IEEE Trans. Wirel. Commun. 19 (3) (2020)
1814–1824, http://dx.doi.org/10.1109/TWC.2019.2958091.

[41] B. Liu, Y. Cao, Y. Zhang, T. Jiang, A distributed framework for task offloading
in edge computing networks of arbitrary topology, IEEE Trans. Wirel. Commun.
19 (4) (2020) 2855–2867, http://dx.doi.org/10.1109/TWC.2020.2968527.

[42] C. Liu, M. Bennis, M. Debbah, H.V. Poor, Dynamic task offloading and resource
allocation for ultra-reliable low-latency edge computing, IEEE Trans. Commun.
67 (6) (2019) 4132–4150, http://dx.doi.org/10.1109/TCOMM.2019.2898573.

[43] S. Guan, J. Zhang, Z. Song, B. Zhao, Y. Li, Energy-saving link scheduling in
energy harvesting wireless multihop networks with the non-ideal battery, IEEE
Access 8 (2020) 144027–144038.

[44] M. Keshavarznejad, M.H. Rezvani, S. Adabi, Delay-aware optimization of en-
ergy consumption for task offloading in fog environments using metaheuristic
algorithms, Cluster Comput. 24 (3) (2021) 1825–1853.

[45] L. Liu, Z. Chang, X. Guo, S. Mao, T. Ristaniemi, Multiobjective optimization for
computation offloading in fog computing, IEEE Internet Things J. 5 (1) (2017)
283–294.

[46] L. Fleischer, Approximating fractional multicommodity flow independent of the
number of commodities, SIAM J. Discret. Math. 13 (4) (2000) 505–520, http:
//dx.doi.org/10.1137/S0895480199355754.

[47] G. Yang, L. Hou, X. He, D. He, S. Chan, M. Guizani, Offloading time optimization
via Markov decision process in mobile-edge computing, IEEE Internet Things J.
8 (4) (2021) 2483–2493, http://dx.doi.org/10.1109/JIOT.2020.3033285.

[48] T. Liu, Y. Zhang, Y. Zhu, W. Tong, Y. Yang, Online computation offloading and
resource scheduling in mobile-edge computing, IEEE Internet Things J. 8 (8)
(2021) 6649–6664, http://dx.doi.org/10.1109/JIOT.2021.3051427.

[49] X. Xu, C. He, Z. Xu, L. Qi, S. Wan, M.Z.A. Bhuiyan, Joint optimization of offload-
ing utility and privacy for edge computing enabled IoT, IEEE Internet Things J.
7 (4) (2020) 2622–2629, http://dx.doi.org/10.1109/JIOT.2019.2944007.

Jiacheng Wang received the B.S. degree in Electronic
Information Science and Technology from the School of
Electronics and Electrical Engineering, Wenzhou University,
Wenzhou, China, in 2020. He is currently pursuing the
M.S. degree in computer technology with Hangzhou Dianzi
University, Hangzhou, China.

Jianhui Zhang received the B.S. degree in mechanotronics
and the M.S. degree in fluid mechanics from Northwest-
ern Polytechnical University, China, in 2000 and 2003,
respectively, and the Ph.D. degree in control theory and
engineering from Zhejiang University, Hangzhou, China, in
2008. He is currently working as a full professor with
the School of Computer Science and Technology, Hangzhou
Dianzi University, Hangzhou. He is the leader of the group
of internet of things including 7 faculties and 50+ grad-
uated students. His research interests spans internet of
things, machine learning, wireless mobile sensing and city

computing.

http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1016/j.comnet.2021.108177
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://www.sciencedirect.com/science/article/pii/S1389128621002322
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1109/JIOT.2017.2780236
http://dx.doi.org/10.1016/j.comnet.2020.107570
https://www.sciencedirect.com/science/article/pii/S1389128620312159
https://www.sciencedirect.com/science/article/pii/S1389128620312159
https://www.sciencedirect.com/science/article/pii/S1389128620312159
http://dx.doi.org/10.1109/JIOT.2017.2727098
http://dx.doi.org/10.1109/TII.2020.3028963
http://dx.doi.org/10.1109/TII.2020.2975897
http://dx.doi.org/10.1109/TII.2020.2975897
http://dx.doi.org/10.1109/TII.2020.2975897
http://dx.doi.org/10.1016/j.comnet.2021.108122
https://www.sciencedirect.com/science/article/pii/S1389128621001961
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2021.3065237
http://dx.doi.org/10.1109/COMST.2021.3065237
http://dx.doi.org/10.1109/COMST.2021.3065237
http://dx.doi.org/10.1016/j.comnet.2021.108426
https://www.sciencedirect.com/science/article/pii/S138912862100390X
http://dx.doi.org/10.1016/j.comnet.2021.108393
https://www.sciencedirect.com/science/article/pii/S1389128621003716
https://www.sciencedirect.com/science/article/pii/S1389128621003716
https://www.sciencedirect.com/science/article/pii/S1389128621003716
http://dx.doi.org/10.1016/j.comnet.2018.05.011
https://www.sciencedirect.com/science/article/pii/S1389128618302214
http://dx.doi.org/10.1016/j.comnet.2021.108523
https://www.sciencedirect.com/science/article/pii/S1389128621004539
https://www.sciencedirect.com/science/article/pii/S1389128621004539
https://www.sciencedirect.com/science/article/pii/S1389128621004539
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb26
http://dx.doi.org/10.1109/INFOCOM.2018.8485977
http://dx.doi.org/10.1016/j.jnca.2019.02.008
http://dx.doi.org/10.1016/j.jnca.2019.02.008
http://dx.doi.org/10.1016/j.jnca.2019.02.008
http://dx.doi.org/10.1109/INFOCOM.2016.7524497
http://dx.doi.org/10.1109/TWC.2020.2964765
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/TNET.2018.2873002
http://dx.doi.org/10.1109/TNET.2018.2873002
http://dx.doi.org/10.1109/TNET.2018.2873002
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TMC.2019.2892100
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/TCOMM.2018.2881725
http://dx.doi.org/10.1109/TNET.2020.2983119
http://dx.doi.org/10.1109/TNET.2020.2983119
http://dx.doi.org/10.1109/TNET.2020.2983119
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1109/JIOT.2018.2875715
http://dx.doi.org/10.1109/TWC.2019.2958091
http://dx.doi.org/10.1109/TWC.2020.2968527
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb43
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb44
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb45
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb45
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb45
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb45
http://refhub.elsevier.com/S1389-1286(22)00270-5/sb45
http://dx.doi.org/10.1137/S0895480199355754
http://dx.doi.org/10.1137/S0895480199355754
http://dx.doi.org/10.1137/S0895480199355754
http://dx.doi.org/10.1109/JIOT.2020.3033285
http://dx.doi.org/10.1109/JIOT.2021.3051427
http://dx.doi.org/10.1109/JIOT.2019.2944007

Computer Networks 214 (2022) 109164J. Wang et al.
Liming Liu is currently pursuing the M.S. degree in
computer technology with Hangzhou Dianzi University,
Hangzhou, China.

Hanxiang Wang received the B.S. degree in Computer
Science and Technology from the School of Information,
North China University of Technology, Beijing, China, in
2020. He is currently pursuing the M.S. degree in computer
technology with Hangzhou Dianzi University, Hangzhou,
China.
13
Zhigang Gao received the B.S. degree in physics and
the M.S. degree in computer application from Lanzhou
University, China, in 1996 and 2000, respectively, and
the Ph.D. degree in Computer Science and Technology
from Zhejiang University, Hangzhou, China, in 2008. He
is currently working as a full associate professor with the
School of Computer Science and Technology, Hangzhou
Dianzi University, Hangzhou. His research interests include
internet of things, machine learning, and mobile computing.

	Utility Maximization for Splittable Task Offloading in IoT Edge Network
	Introduction
	Related works
	IoT Edge Computing
	iTEN Dynamics

	System model and problem formulation
	System model
	Problem formulation

	 and problem transformation
	
	Discretized problem

	Single terminal scheme
	Single offloading path construction
	Single terminal algorithm design
	Algorithm analysis.

	Multiple terminals dual method
	Garg and Konemann's framework
	Networked energy allocation

	Evaluation
	Simulation setting
	Performance results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

