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Protecting Location Privacy of Users Based on
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Zhigang Gao , Yucai Huang , Leilei Zheng , Huijuan Lu , Bo Wu , Member, IEEE,
and Jianhui Zhang

Abstract—In mobile crowdsensing activities, it is usu-
ally necessary for participants to upload sensing data and
related locations. The existing location privacy-preserving
mechanisms cannot well protect a user’s trajectory privacy
because attackers can mine the user’s trajectory features
through data analysis techniques. Aiming at the trajec-
tory privacy protection problem, this article proposes a
differential location privacy-preserving mechanism based
on trajectory obfuscation (LPMT). LPMT first extracts the
stay points as the features of a trajectory based on the
sliding window algorithm, and then obfuscates each stay
point to a target obfuscation subregion through the expo-
nential mechanism, and finally performs the Laplace sam-
pling in the target obfuscation subregion to obtain the ob-
fuscated GPS points. Compared with the baseline mecha-
nisms, LPMT can reduce data quality loss by more than 20%
while providing the same level of obfuscation quality, which
indicates that LPMT has the advantages of strong security
and high quality of service.

Index Terms—Differential location privacy, exponential
mechanism, mobile crowdsensing, trajectory obfuscation.

I. INTRODUCTION

MOBILE crowdsensing (MCS) is a kind of emerging
distributed intelligence technology. MCS brings a new
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data collection paradigm which uses mobile devices (e.g.,
smartphones, vehicular sensors, etc.) widely distributed in the
surrounding environment to execute sensing and calculation,
such as temperature and humidity monitoring, road condition
monitoring, etc. [1].

Although MCS brought great chances for enterprises and
organizations, it is often involved in privacy concerns. In most
MCS activities, whether in the task assignment phase or the task
execution phase, it is necessary to collect the users’ location
data. If a user’s location data are obtained by malicious attackers,
they can use clustering and other methods to extract the user’s
trajectory features, such as stay points or points of interest, which
may cause immeasurable risk to the safety of life and property
of the user.

In the past decade, researchers have proposed many Location
Privacy-Preserving Mechanisms (LPPMs) [2]–[4]. However, the
traditional LPPMs focus on discrete location-based systems,
such as navigation, online ordering, etc., which only use lo-
cation data in discrete periods. Because the location data in
above-mentioned scenarios are quite sparse, LPPMs only need
to consider the spatial dimension, and take measures to obfuscate
or anonymize the actual location during the service period
to protect location privacy. However, in the MCS scenario, it
usually requires participants to turn on the device sensors for
a long time to perform sensing tasks and continuously upload
sensing data to the data center. Compared with the discrete
location-based systems, there are denser user location data in
the MCS scenario. If the traditional LPPMs are applied to this
situation, an attacker can extract the user’s features through data
analysis methods such as clustering and regression analysis, and
then uses background knowledge to obtain the user’s private
information. For example, Boukoros et al. [5] used the DBSCAN
clustering algorithm to extract the points of interest of users, and
then combined the information posted by these users on their
social platforms such as Twitter and LinkedIn to successfully
infer the workplaces of 35% users.

In order to solve the location privacy problem in the MCS
scenario, this article proposes a Location Privacy-preserving
Mechanism based on Trajectory obfuscation (LPMT). Because
there is no trusted server in LPMT, the main operation of location
obfuscation is performed by the user devices, and then the user
devices upload the obfuscated data to the data center. LPMT
consists of three phases, i.e., the trajectory feature extraction
phase, the stay points obfuscation phase, and the stay points
generalization phase. In the trajectory feature extraction phase,
LPMT takes the stay points as the feature of trajectories, and then
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generates an obfuscation region r for each stay point. In the stay
points obfuscation phase, LPMT outputs a target obfuscation
subregion from r through exponential mechanism. In the stay
points generation phase, LPMT performs the Laplace sampling
in the target obfuscation subregion, and replaces the original
GPS points with the sampled GPS points, which will be uploaded
to the data center. The main contributions of this article are as
follows.

1) This article proposes a location privacy-preserving mech-
anism based on trajectory obfuscation, which can ef-
fectively resist background knowledge attacks in the
MCS scenario by ensuring the differential privacy of stay
points.

2) This article proposes a trajectory feature extraction
method based on sliding window, which can quickly
extract the stay points from trajectories.

3) This article proposes a Stay Points Obfuscation Algo-
rithm (SPOA). SPOA maps the original stay points to the
target obfuscation subregions by the exponential mecha-
nism, and can provide ε-differential privacy.

4) This article proposes a utility calculation method that
combines the Euclidean distance and Location Context
Similarity (LCS), which can reduce the loss of the quality
of the sensing data and provide strong location privacy.

The rest of this article is organized as follows. Section II
reviews the related work in the field of location privacy protec-
tion. Section III introduces the related definitions of differential
privacy. Section IV presents the framework and workflow of
LPMT. Section V describes the implementation of LPMT in de-
tail. Section VI explains the experimental process and analyzes
the results. Finally, Section VII concludes this article.

II. RELATED WORK

In the current research on location-based systems, there are
two general LPPMs, i.e., the anonymity-based LPPMs and the
obfuscation-based LPPMs.

The idea of the anonymity-based LPPMs is to cut the con-
nection between user identities and their location informa-
tion. The k-anonymity scheme and the mix-zone scheme are
two common implementations of the anonymity-based LPPMs.
Gruteser and Grunwald [6] proposed a spatial cloaking scheme
based on k-anonymity [7], which generalized a user’s location
to an anonymous region, which contained at least other k−1
users. All users in the region were anonymous with each other,
therefore, the probability of a malicious attacker successfully
distinguishing the actual location of a user was less than 1/k. A
user’s location will be generalized into a vague location region in
the traditional anonymity-based LPPMs. However, in the MCS
scenario, generalizing a user’s location into a vague location
region will reduce the efficiency of task allocation. Zhang
et al. [8] proposed a virtual selection scheme considering the
geographical semantic information characteristics of locations.
This scheme used a multicenter clustering algorithm based on
the max–min distance method to generate a virtual candidate
set for spatial cloaking, which could balance the contradiction
between privacy protection and task allocation efficiency. Zhao
et al. [3] proposed a credibility-based k-anonymity scheme,
which could effectively prevent location injection attacks while

ensuring quality of service. Different from the k-anonymity
scheme, the mix-zone scheme can be used without user iden-
tity information. Beresford and Stajano [9] first proposed the
mix-zone scheme. The mix-zone scheme protected the privacy
of a user by frequently changing a user’s name or pseudonym
in the mixed zones. Guo et al. [10] proposed an independent
mix-zone scheme (IndMZ) that combined the collaborative mix
zone with the self-established mix zone. IndMZ could ensure
k-anonymity, and the average cost of extended beacon message
was k/2. Memon et al. [11] proposed a scheme based on multiple
mix zones, which linked the starting point of queries to a nearby
point of interest, and ensured that the starting point of queries
and the point of interest were indistinguishable. However, the
current anonymity-based LPPMs still have many disadvantages,
such as the vulnerability to resist background knowledge attacks.

The obfuscation-based LPPMs protect the location privacy by
obfuscating the actual locations of users with the fake ones. The
fake location scheme and the location mapping scheme are the
two common implementations of this mechanism. The fake lo-
cation scheme protects users’ locations by mixing multiple fake
locations with their actual ones. You et al. [12] used random and
rotating patterns to generate virtual trajectories of users. Lei et al.
[13] rotated the trajectories of users beyond a certain distance
deviation to achieve the indistinguishability between the actual
trajectories and the fake ones. The location mapping scheme
maps actual locations to other ones through some mapping rules,
and then sends the obfuscated locations to the data center. Andres
et al. [14] proposed the concept of Geo-Indistinguishability
(GeoInd) based on the differential privacy mechanism. They
first used the Laplace sampling to discretize a 2-D map, and
then added noise to the actual locations. Finally, they restricted
the obfuscation region through a truncation mechanism. It has
proved that the differential privacy mechanism could resist back-
ground knowledge attacks. However, GeoInd did not consider
the loss of data quality, so it was not suitable for the MCS
applications. Wang et al. [15] proposed a differential privacy
obfuscation scheme based on grid domain decomposition for the
sparse MCS applications. They used a data adjustment function
and an uncertainty-aware inference algorithm to reduce the loss
of data quality and improve the practicality of this scheme.

III. FOUNDATION OF DIFFERENTIAL PRIVACY

Differential privacy is a general privacy protection strategy
proposed by Dwork [16]. It has proved by the rigorous math-
ematical theories that differential privacy strategy can resist
background knowledge attacks [14]. In order to make it easy to
understand the rest parts of this article, this section will briefly
introduce the definitions and theorems related to differential
privacy.

Definition 1. ε-Differential Privacy: Suppose there are two
datasets D and D′ that are different from each other at most one
row record. For a randomization algorithm M, if the outputs on
the datasets D and D′ meet the inequality (1), then the algorithm
M(D) can provide ε-differential privacy

Pr(M(D) ∈ S) ≤ exp(ε)× Pr(M(D′) ∈ S) (1)

where Pr(M(D) ∈ S) denotes the probability that the output
of M on the dataset D belongs to S, the parameter ε is called the
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privacy budget or privacy level. In general, smaller ε will lead
to higher privacy protection level. However, data quality will
decrease as the increment of privacy protection level.

Definition 2. Sensitivity: Suppose there is a function f :
Dn → Rd, its input is an n-dimension dataset, and its output is a
d-dimension vector. For any datasets D and D′ that are different
from each other at most one row record, the sensitivity of the
function f is defined as

Δf = max
D,D′

‖f(D)− f(D′)‖ (2)

where Δf is the sensitivity, which denotes the greatest impact
caused by deleting/inserting one record from/into the dataset D.

There are two main implementation mechanisms of the differ-
ential privacy, i.e., the Laplace mechanism and the exponential
mechanism. The Laplace mechanism and the exponential mech-
anism are usually used for the protection of continuous private
data and discrete private data respectively.

The Laplace mechanism achieves the obfuscation effect by
adding the Laplace noise to the original private data. For exam-
ple, D can be obfuscated by

M(D) = f(D) + Y (3)

where

Y ∼ L

(
0,

Δf

ε

)
(4)

and f(D) denotes the function which queries private data, Y
is the Laplace noise which obeys the distribute of L(0, Δf

ε ),
and M(D) is the output of the algorithm M. It can be seen that
when the privacy budget ε becomes smaller, the noise value will
becomes larger, and the level of privacy protection will becomes
higher.

The exponential mechanism [17] maps the original private
data to a candidate set, and then uses a utility function to
calculate the scores for all the mappings, and finally outputs
a sampled value with a given probability. In fact, the exponen-
tial mechanism ensures differential privacy by approximating
the actual value of data with the help of utility function. The
formal description of the exponential mechanism is defined by
Theorem 1.

Theorem 1: Suppose the input of the randomization algo-
rithm M is the dataset D, and the output is an entity object r ∈ S.
u(D, r) → R is the utility function, and Δu is the sensitivity of
the function u. If M chooses r with the probability which is in
proportion to exp(εu(D,r)

2Δu ) from S and outputs r, it can provide
ε-differential privacy.

When implementing a differential privacy mechanism, there
are two main privacy budget compositions, i.e., the sequential
composition and the parallel composition. They are defined in
Definition 3 and Definition 4, respectively.

Definition 3. Sequential Composition: Suppose the algo-
rithm M consists of m independent steps, i.e., M = {M1, …,
Mm}. If any step Mi can provide εi-differential privacy, the
algorithm M can provide (

∑m
i=1 εi)-differential privacy.

Definition 4. Parallel Composition: Suppose the algorithm
M consists of m independent steps, i.e., M = {M1, …, Mm}. If

Fig. 1. Location privacy-preserving framework.

Fig. 2. Workflow of LPMT.

any step Mi can provide εi-differential privacy, the algorithm M
can provide max{ε1, . . . , εm}-differential privacy.

IV. FRAMEWORK AND WORKFLOW OF LPMT

Generally, the current location privacy-preserving frame-
works can be classified into two categories according to whether
they include a trusted server. If a framework includes a trusted
server, the user’s location will first be uploaded to the trusted
server, and then the trusted server performs anonymization or
obfuscation operations and delivers the processed data to the data
center [18], [19]. However, the communication channel from the
user devices to the trusted server is unreliable and vulnerable to
man-in-the-middle attacks [20]. In addition, deploying a trusted
server is very difficult in reality [21]. If a framework does
not contain a trusted server, user devices are responsible for
obfuscating location data, and then upload the results to the
data center [15], as shown in Fig. 1. Compared with the first
type of framework, the non-trusted server framework not only
is more practical and safer, but also has higher requirements for
the computing performance of user devices, which is suitable
for the distributed intelligence scenario.

In Fig. 1, LPMT is based on the non-trusted server framework,
the user devices can be mobile phones and vehicular sensors.
User devices will execute the obfuscation of the sensing data,
and then upload the results to the data center. As shown in
Fig. 2, LPMT includes three phases, the first phase is trajectory
feature extraction, the second phase is stay points obfuscation,
and the third phase is stay points generalization. In these three
phases, the trajectory feature extraction phase and stay points
generalization phase are deployed on the user devices. In the
stay points obfuscation phase, the calculation of the location
context similarity is deployed on the data center, and the rest
operations are deployed on the user devices.

In the trajectory feature extraction phase, LPMT extracts
the stay points as the feature of the user’s trajectory and then
generates obfuscation regions and subregions. A stay point
is a spatiotemporal point that may leak the user’s privacy
information.
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Fig. 3. Two types of stay points.

Definition 5. Stay Point: A characteristic point of trajectories
where a user stays on a specific location for a timespan greater
than or equal to a time threshold.

Compared with the original GPS points, almost every stay
point has a specific meaning, such as the user’s workplaces,
home, dining room, etc. Two types of stay points are summarized
in the literature [22], as shown in Fig. 3. The stay point 1 indicates
that the user stays at this place for a long period, and the stay
point 2 indicates that the user is wandering around the place for
a while.

At the end of the trajectory feature extraction phase, LPMT
will generate an obfuscation region r for each original stay point,
and then divide r into several subregions at the same size in order
to obtain the candidate obfuscation subregions. The reason for
generating obfuscation regions and subregions is as follows. If
the stay points of the trajectory belong to the type of the stay
point 1 in Fig. 3, the sampled points will be evenly distributed
around the stay point, an attacker can obtain the feature of the
trajectory by clustering on the sampled points. For example,
GeoInd in [14] takes an original GPS point as the center of a
circle, performs the Laplace sampling in the circle with a radius
l, and then replaces the original GPS points with the sampled
points. The method in [14] will expose the stay point 1 when it is
used to the continuous sampling trajectories. Therefore, LPMT
generates obfuscation regions and subregions in order to prepare
for the next phase (i.e., stay points obfuscation phase).

In the stay points obfuscation phase, LPMT selects obfusca-
tion subregions from r through an exponential mechanism and
makes them meet the requirements of differential privacy (see
Theorem 1). There are two reasons for applying the exponential
mechanism to the second phase. First, both the input and output
of SPOA algorithm are discrete data because the exponential
mechanism is usually used for the protection of discrete private
data, the exponential mechanism is suitable for the second phase.
Second, in the exponential mechanism, the utility function can
help us approximate the actual value of the sensing data as much
as possible while ensuring differential privacy. In the process of
implementation, for a stay point sp, LPMT first calculates the
utility value when sp is obfuscated to each subregion according
to the utility function, and then calculates the sampling proba-
bility according to the utility value. Finally, LPMT samples and
outputs the target obfuscation subregion. Additionally, LPMT
optimizes the utility function by combining LCS with the Eu-
clidean distance, which can provide a better balance between
obfuscation quality and data quality.

In the stay points generalization phase, LPMT uses the
Laplace distribution to generalize the obfuscated stay point
in order to ensure that the sampling process also meets the
differential privacy constraints. As shown in Fig. 3, both stay
point 1 and stay point 2 are converged from multiple GPS points.

TABLE I
TABLE OF ABBREVIATIONS

Fig. 4. Implementation of LPMT.

Therefore, after obtaining the target obfuscation subregion r of
sp, we need to perform generalization sampling in r, and then
replace the original GPS points with the sampled GPS points.

As shown in Fig. 2, LPMT is composed of the exponential
mechanism and the Laplace mechanism in its implementation
process, each of which meets ε-differential privacy. According
to Definition 3, LPMT can provide 2 × ε-differential privacy.
Abbreviations frequently used in this article and their full names
are summarized in Table I.

V. IMPLEMENTATION OF LPMT

In this section, we will elaborate on the implementation of
LPMT, including the implementation of the trajectory feature
extraction algorithm and the stay points obfuscation algorithm,
as well as the detailed process of the stay points generalization.
The steps of each phase are shown in Fig. 4.

A. Trajectory Feature Extraction Algorithm

In this section, we first introduce some definitions that will be
used in the rest of this article, the notations and their descriptions
are summarized in Table II.

In MCS applications, non-real-time tasks account for a large
proportion [1]. For the non-real-time tasks, the data center does
not require the user devices to submit sensing data immediately,
and the user devices can buffer the sensing data in its built-in
database (e.g., SQLite in Android OS) for a specific timespan.
This article defines the user’s trajectory buffered during this
timespan as a segment Seg. If the user devices upload the sensing
data to the data center every hour, the local GPS log of the
user devices records the user’s trajectories during one hour.
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TABLE II
NOTATIONS AND DESCRIPTIONS

Because the types of sensing data are different for different
MCS scenarios, the buffered timespan can be set according to
specific requirements (such as data sampling frequency, real-
time requirements, etc.). In this article, we assume that the user
devices upload the sensing data to the data center every hour, the
local GPS log of the user devices records the user’s trajectories
during these hours. We assume that a user trajectory has m
segments (m>0) in total, the user’s trajectory Tr is the set of
{Seg1, . . . , Segm}. In the following sections, LPMT only per-
forms obfuscation on a single segment each time. For simplicity,
we use Seg to denote the segment, rather than Segi. Seg consists
of a sequence of GPS points {p1, . . . , pz}. We can extract n stay
points from this sequence to denote the segment, and obtain
Seg = {sp1, . . . , spn}. For a stay point spi, it is represented by
(Lati, Lngti, ArvTi, LevTi), i.e., Latitude, Longitude, Arrive
Time, and Leave Time respectively. The trajectory feature ex-
traction phase includes two steps, i.e., the stay points extraction
and the target obfuscation subregion allocation.

In the first step, LPMT extracts the stay points from the
trajectory segment Seg. The extraction of stay points depends on
two scale parameters, i.e., the time threshold Tth and the distance
threshold Dth. For any continuous subsequence of Seg denoted
by the original GPS points {px, . . . , py}, 1 ≤ x < y ≤ z. If the
original GPS points subsequence meets (5) and (6) defined as
follows:

dist(px, pj) ≤ Dth, x ≤ j ≤ y (5)

|px.T − py.T | ≥ Tth (6)

where dist(px, pj) is the Euclidean distance between px and pj,
px.T and py.T are the collecting time of px and px, respectively,
we can extract a stay point according to (7) defined by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sp.Lat =
∑y

j=x pj .Lat/ |y − x|
sp.Lngt =

∑y
j=x pj .Lngt/ |y − x|

sp.arvT = px.T

sp.levT = py.T

. (7)

The implementation of the Trajectory Feature Extraction Al-
gorithm (TFEA) is shown in Algorithm 1.

TFEA takes the locally buffered GPS point sequence as input,
and initializes the time threshold Tth and the distance threshold
Dth in Line 1. TFEA initializes the left boundary of the sliding
window in Line 2. TFEA expands the right boundary of the
sliding window from Line 4 to Line 7. In each sliding step,

Algorithm 1: Trajectory Feature Extraction Algorithm.
Input: GPS points sequence {p1, …,pz}.
Output: Stay points set S.
1. Initialize: Init Tth, Dth;
2. w_left = 1;
3. while w_left < = z
4. w_right = w_left + 1;
5. while w_right < = z and dist(pw_left, pw_right) < =

Dth

6. w_right++;
7. end while
8. w_right−−;
9. if |pw_left.T - pw_right.T| > = Tth

10. sp.Lat =
∑w_right

i=w_left pi.Lat/|y − x|;
11. sp.Lngt =

∑w_right
i=w_left pi.Lngt/|y − x|;

12. sp.arvT = pw_left.T ;
13. sp.levT = pw_right.T ;
14. S.add(sp);
15. w_left = w_right+1;
16. else
17. w_left++;
18. end if
19. end while
20. return S

TFEA judges whether the GPS point on the right edge of the
window meets (5). If it is true, TFEA algorithm continues to
expand the right boundary of the sliding window; otherwise, the
expansion process ends. TFEA judges whether the left and right
boundaries of the current window meet (6) in Line 9. If it is true,
TFEA extracts a stay point according to (7) and adds it into the
output set S from Line 10 to Line 14, and then replaces the left
boundary of the current window with the next point to its right
boundary in Line 15; otherwise, TFEA updates the left boundary
of the current window in Line 17. The steps from Line 4 to Line
18 are repeated until the window reaches the last element of
the input GPS sequence. TFEA finally outputs the set of stay
points S.

In the second step, LPMT allocates an obfuscation region for
each stay point extracted in the first step. There are usually two
kinds of obfuscation regions. The first one is a circular region
with its original GPS point as the center [23], and the second one
is a rectangular region which consists of several equal-sized grids
[15]. This article uses the second kind of obfuscation region, as
shown in Fig. 5.

The blue points represent the original GPS points and the red
points represent the stay points. LPMT takes each stay point
spi as the center, and draws a square region as the obfuscation
region ri, and then divides ri into several equal-sized grids as
the candidate obfuscation subregions {ri,1, …, ri,k, …, ri,w}.
Because the size of ri and the number of the subregions will in-
fluence the obfuscation effect, we can set the size of ri according
to the Euclidean distance of a user’s movement in Seg, and set
the number of subregions in ri according to the number of stay
points in Seg.
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Fig. 5. Obfuscation region of spi.

Algorithm 2: Stay Points Obfuscation Algorithm.
Input: Trajectory segment Seg = {spi, …, spn}.
Output: Target obfuscation subregions set S.
1. Download location context similarity information

from data center;
2. for each stay point spi in Seg do
3. for each subregion ri,k in region ri do
4. Calculate utility value:

U(spi, ri,k) = β × lcs(ri,sp, ri,k)− (1 − β)×
norm(dist(spi, r

c
i,k));

5. Calculate sensitivity:
ΔU = max

ri,k∈M(Seg),r′i,k∈M(Seg′)
‖U(spi, ri,k)

− U(spi, r
′
i,k)‖;

6. Calculate sampling probability of ri,k:Pr(ri,k) =

exp(
εU(spi,ri,k)

2ΔU )
/∑

j

exp(
εU(spi,ri,j)

2ΔU );

7. end for
8. Random sampling according to the probability,

output a target subregion ri,t to set S;
9. end for

10. return S;

B. Stay Points Obfuscation Algorithm

LPMT obfuscates each stay point in Seg in turn by using
SPOA. SPOA takes the stay points set {sp1, . . . , spn} as input
data and outputs the target obfuscation subregions of stay points,
as shown in Algorithm 2.

SPOA downloads the LCS data of candidate obfuscation
subregions in Line 1; Line 2 enumerates each stay point in
Seg; Line 3 enumerates each subregion ri,k in ri; Lines 4 to
6 calculate the probability that ri,k is selected as the target
obfuscation subregion; SPOA performs random sampling in
Line 8 according to the probability calculated before, and adds
the output subregion to S in Line 10. In the rest of this section,
we will elaborate on the calculation steps of the utility value,
sensitivity, and sampling probability in Algorithm 2.

Utility value calculation. In Section V-A, we have obtained
the candidate obfuscation subregions ri = {ri,1, …, ri,k, …,
ri,w} of spi. In this step, the user devices will query the LCS
between two subregions in ri from the data center. The LCS
value between ri,sp and ri,k is calculated based on the historical
sensing data, which have been uploaded to the data center (ri,sp
is the subregion where the stay point spi lies.), and it is defined

by

LCS(ri,sp, ri,k) =

24∑
j=1

vsp,j × vk,j

/{√∑24

j=1
(vsp,j)

2

×
√∑24

j=1
(vk,j)

2

}
(8)

where vk,j is the average value of subregion ri,k in the jth period.
LPMT divides one day into 24 periods with equal intervals, and
calculates the average value {vi,1, . . . , vi,24} of the sensing data
in each period. For two subregions, if the mean values of their
sensing data in the same period are closer, the two subregions
have the higher similarity of the location context.

LPMT calculates the utility value by combining the Euclidean
distance with LCS, and then obtains the sampling probability of
every subregion according to the utility value. The Euclidean
distance between the stay point spi and the center rc

i,k of the
obfuscation subregion ri,k can be used to measure the quality of
trajectory obfuscation. The obfuscation quality from spi to ri,k
can be calculated by

Q(spi, ri,k) = dist(spi, r
c
i,k). (9)

For an obfuscation subregion ri,k, the farther the distance
between rc

i,k and spi is, the higher the quality of trajectory
obfuscation is. However, the quality of the sensing data will
decrease as the quality of the trajectory obfuscation increases.
Therefore, LPMT applies LCS to the utility calculation. The
data quality loss can be reduced if the stay point is obfuscated
to a subregion with the similar LCS value. The utility function
U can be derived by

U(spi, ri,k) = β × LCS(ri,sp, ri,k)− (1 − β)

× norm(dist(spi, r
c
i,k)) (10)

where ri,sp is the subregion where spi is located, norm(x)
denotes the normalization function of the output value x, the
parameter β is used to control the weight of the Euclidean
distance and LCS in the utility function.

Sensitivity calculation. The sensitivity (see Definition 2) of
the SPOA algorithm can be derived according to

ΔU = max
ri,k∈M(Seg)
r′i,k∈M(Seg′)

∥∥U(spi, ri,k)− U(spi, r
′
i,k)

∥∥ (11)

where M refers to the SPOA algorithm, Seg′ represents a new
trajectory segment formed by adding or deleting a stay point
in Seg.

Sampling probability calculation. According to the defina-
tion of exponential mechanism, the probability that a subre-
gion ri,k is selected as the target obfuscation subregion can be
calculated by

Pr(ri,k) = exp

(
εU(spi, ri,k)

2ΔU

)/∑
j

exp

(
εU(spi, ri,j)

2ΔU

)
.

(12)
At the end of the stay points obfuscation phase, SPOA

performs uniform sampling according to the probability value
calculated above, and outputs a target obfuscation subregion ri,t.
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C. Stay Points Generalization

In the stay points generalization phase, LPMT performs the
Laplace sampling in the target obfuscation subregion ri,t, and
uses the sampled GPS points as the final output of LPMT and
uploads it to the data center. LPMT uses the scheme proposed
in [14] to perform GPS point sampling, and this scheme belongs
to the Laplace mechanism, which includes the following three
steps.

Step 1. Polar coordinate transformation. In this step, LPMT
converts the probability density function of the 3-D Laplace
distribution into the polar coordinate form defined by{

Dε,R(l) = ε2 · l · e−εl

Dε,Θ(θ) =
1

2π
(13)

where the random variables l and θ represent the radius and
angle in the polar coordinate system, respectively, and Dε,R(l)
and Dε,Θ(θ) represent the probability density functions of the
random variables l and θ , respectively.

Step 2. Uniform sampling for the random variables θ and l. In
this article, l represents the distance between the sampled point
and the center of target obfuscation subregion rc

i,t. l reflects the
size of the distribution range of the sampled points, and the value
of l is proportional to the amount of privacy budget consumed.
Therefore, given a privacy budget ε, the probability that the
distance between the sampled points and rc

i,t falls between [0,
l) can be calculated by

Pr(l) =

∫ l

0
Dε,R(ρ)dρ = 1 − (1 + εl)e−εl (14)

and

l = −1
ε

(
W−1

(
Pr − 1

e

)
+ 1

)
(15)

where (14) is the cumulative distribution function of radius l,
and W−1 is the Lambert W function (the −1 branch).

In order to sample the random variable l, LPMT first randomly
generates a probability value Pr within the interval [0, 1), and
then calculates the value of l according to (15). In addition, θ
only needs to be sampled within the interval [0, 2π). Finally,
LPMT calculates the coordinates of the sampled point z by

z = rci,t + 〈l · cos θ, l · sin θ〉 . (16)

After several sampling operations, a large number of GPS
points are generated around rc

i,t, as shown in Fig. 6(a).
Step 3. Truncation operation. LPMT performs a truncation

operation to limit the sampled points within the target obfusca-
tion subregion ri,t. Since the Laplace sampling range is infinite
in theory, a truncation operation must be performed to ensure
that the obtained GPS points fall within ri,t. The results after the
sampled points in Fig. 6(a) are performed a truncation operation
are shown in Fig. 6(b).

VI. EXPERIMENT AND ANALYSES

In this section, we will evaluate the performance of LPMT in
terms of space and time overhead, obfuscation quality and data
quality. Obfuscation quality refers to the deviation between the
new trajectory and the original one after stay points obfuscation.

Fig. 6. Sampling and truncation. (a) Sampled points. (b) Results of a
truncation operation.

The higher the obfuscation quality is, the higher the protection
level of location privacy is. Data quality refers to the errors
of the sensing data after stay points obfuscation. LPPMs must
minimize the errors as much as possible to ensure that the data
center can mine useful information from the sensing data.

A. Experiment Setup

Experiment environment. In the following experiments, the
software development platform is PyCharm, and all the algo-
rithms are implemented in Python. The hardware platform is a
PC equipped with the Core(TM) i7-8700 CPU of 3.20 GHz, the
memory of 16 GB, and the operating system of Win10 x64.

Dataset. The dataset used in the following experiments is
Geolife [24], which collects the GPS data of 182 users in Beijing
over 5 years. The dataset contains a total of 17 621 trajectories,
and they extensively record the users’ outdoor movement tra-
jectories, including events such as going to work, going home,
entertainment, and traveling. Since 76% users in Geolife have
a data collection time of more than one week, we divided the
dataset into the following two parts based on the data collection
time. 1) The data in the first week are used as historical data to
calculate LCS; 2) The rest data are used to test the performance
of LPMT. In order to study the data quality loss of LPMT in
the MCS scenario, we use the “Altitude” field in Geolife as
the sensing data of the MCS task because it can reflect the
geographic location context similarity of different locations.

Baseline mechanisms. We chose GeoInd [14] and DUM−εe
[15] as the baseline mechanisms, and compared their perfor-
mance with LPMT in terms of obfuscation quality and data
quality. GeoInd uses the Laplace mechanism to add noise to
original GPS points to achieve obfuscation; DUM−εe uses a
well-trained obfuscation matrix to obfuscate the location of
participants in a grid unit, and then uses data adjustment function
and uncertainty-aware inference algorithm to reduce the loss of
data quality. In addition, this article also conducted a self-control
experiment (LPMT without LCS versus LPMT) to compare the
obfuscation quality and data quality of LPMT between before
and after integrating LCS.

Experiment parameters. There are four parameters to be set
in the following experiments, i.e., the time threshold Tth, the
distance threshold Dth, the privacy budget ε and the utility
weightβ. ε andβ have multiple values for selecting. We compare
the obfuscation quality and data quality of baselines under
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TABLE III
PARAMETER SETUP

different composition of privacy budgets and utility weights.
Table III shows the values of parameters used in the following
experiments.

B. Performance Indexes

The obfuscation quality is an important index to evaluate the
performance of LPPMs. If the distance between the obfuscated
stay point and the original stay point becomes larger, the quality
of data obfuscation will become higher. Therefore, this article
uses the distance between the original stay point and the obfus-
cated one to quantify the obfuscation quality. The obfuscation
quality for Seg is defined by

Q(spi, sp
′
i) =

1
n

n∑
i=1

dist(spi, spi
′) (17)

where n is the number of original stay points in Seg, spi repre-
sents the original stay point, and spi′ represents the obfuscated
stay point corresponding to spi.

In the MCS scenario, the data quality of the sensing tasks
affects the quality of service. Because low-quality sensing data
will lead to large analysis errors, the data center cannot mine
valuable information from low-quality sensing data. Because
almost all LPPMs will cause the loss of data quality to a certain
extent, how to reduce the loss rate is an important problem. Root-
mean-square error (RMSE) can be used as an index to measure
the error between the observed values and the actual values. In
this article, we use the value of RMSE, VRMSE to measure the
loss of data quality after obfuscation, and it is defined by

VRMSE(Seg, Seg
′) =

√
1
n

∑n

i=1
(Vi − Vi

′)2 (18)

where Vi is the sensing data of the region where the original stay
point is located, Vi

′ is the sensing data in the target obfuscation
subregion ri,t. After obfuscating the original stay point to ri,t,
Vi

′ will be used as the the sensing data of ri,t, so the RMSE
between Vi

′ and Vi can be used to quantify the loss of data
quality. The VRMSE is not fixed for the same data when LPMT
operates another time. It is the uncertainty that makes the user’s
location privacy not be easily disclosed.

C. Experiment Results

1) Space and Time Overhead: We first analyze the space
overhead of LPMT. In the trajectory feature extraction phase,
the space complexity of LPMT is O(n2), where n depends on the
number of candidate obfuscation subregions. In this experiment,
we use the Geolife dataset. The sampling frequency of GPS
points is once every 5 s, and the storage space occupied by the

TABLE IV
TIME COMPLEXITY OF EACH PHASE IN LPMT

TABLE V
TIME OVERLOAD OF EACH PHASE IN LPMT

sensing data within one hour is about 40 KB. For most of the
existing mobile devices, it is negligible to pay the space overhead
of 40 KB.

In the following parts of this section, we will analyze the time
overhead of LPMT. In the trajectory feature extraction phase, it
needs to traverse all sequence windows. If the length of Seg is z,
then the time complexity is O(z2); In the stay points obfuscation
phase, the location context similarity data is pre-downloaded
from the data center, we can focus on SPOA. SPOA traverses
each stay point, and selects a target obfuscation subregion for
each stay point through the exponential mechanism. If the
number of stay points of Seg is n, and the number of candidate
subregions in ri is k, the time complexity of this phase is O(n∗k);
In the stay points generalization phase, whether it is random
sampling or truncation operation, the overall time complexity is
O(n2). Since the three phases are in sequential order, the overall
time complexity of LPMT is O(n2). In order to make it easy to
follow, we listed the time complexity of each phase in Table IV.

In this experiment, we tested the real-world time consumption
in LPMT. Table V shows the time consumption of each phase in
LPMT, where n is the number of stay points.

In the trajectory feature extraction phase, the time consump-
tion depends on the number of GPS points in Seg. In this article,
we define Seg as the local buffered GPS points in one hour.
In the Geolife dataset, sensing data is collected every 5 s, so
Seg contains approximately 720 GPS points. After multiple
experiments, it shows the time consumption in the trajectory
feature extraction phase is less than 20 ms (t1). In our experiment,
the size of obfuscation region ri is set to 1 × 1 km2, and the size
of each subregion in ri is set to 100 × 100m2. It takes about
182 ms to complete the LCS calculation (t2), and about 43 ms
(t3) and 61 ms (t4) to obfuscate a stay point and generalize a
stay point, respectively.

Note that LPMT deploys the function of LCS calculation,
which is the most time-consuming operation, into the data center.
The time overhead of the user devices is negligible, and only
incurs small communication overhead.

2) Obfuscation Quality: In this section, we compare the ob-
fuscation qualityQ among GeoInd,DUM−εe, LPMT (β = 0.5)
and LPMT without LCS on different privacy budgets ε. In
addition, we also compare the varieties of obfuscation quality
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Fig. 7. Obfuscation quality. (a) On different privacy budgets. (b) In
different utility weights.

when we change the utility weight β and keep a fixed privacy
budget in LPMT.

Fig. 7(a) shows the obfuscation quality Q of LPPMs when
increasing the privacy budget ε. It can be seen from Fig. 7(a)
that the Q of all LPPMs decrease when ε increases, and it is
because that LPPMs do not have to obfuscate locations too
far away when there are enough privacy budgets. GeoInd has
the worst obfuscation quality. It is because the obfuscated GPS
points are distributed around the original stay points in GeoInd,
which leads to the distance between the obfuscated stay points
and the original ones not far enough. Since LCS is considered,
the Q value of LPMT (β = 0.5) become a little lower, which
is 1.2%–2.8% less than that of DUM−εe. It is because that
the Euclidean distance between the stay point and the target
obfuscation subregion is positively correlated with the obfus-
cation quality, and the intruduction of LCS tends to obfuscate
the stay point to a closer subregion. Because of not considering
the LCS between subregions, the Q value of LPMT without
LCS can increased by 5.1%–10.4% compared to those of LPMT
(β = 0.5), which performs the best among all baselines in this
experiment.

Fig. 7(b) shows the changes of obfuscation quality Q of
LPMT when we increase utility weight β and keep ε = ln 2.
As shown in Fig. 7(b), when β increases from 0.1 to 0.4, Q
keeps decreasing rapidly; When β lies between 0.5 and 0.6, Q
has a little increment; Whenβ is above 0.7,Q drops significantly.
As mentioned before, increasing the vaue of β (i.e., the weight
of LCS in the utility function) tends to obfuscate a stay point
to a closer subregion (in general, LCS between adjacent subre-
gions is higher), which leads to a decrease in the obfuscation
quality.

3) Data Quality: In this section, we compare the data quality
loss RMSE among GeoInd, DUM−εe, LPMT (β = 0.5), and
LPMT without LCS on different privacy budgets ε. Moreover,
we also compare the RMSE of LPMT when the utility weight β
changes while keeping a fixed privacy budget.

Fig. 8(a) shows the changes of RMSE of LPPMs when we
increase the privacy budget ε. It can be seen from Fig. 8(a)
that the RMSE of all LPPMs decrease when ε increases. It is
because that LPPMs do not have to obfuscate locations too
far away when there is a lower privacy level. LPMT has the
lowest RMSE, which has the best performance on data quality.
Compared with GeoInd and DUM−εe, LPMT can reduce the
RMSE value by 12.2%–26.9% and 4%–12.9%, respectively. The
reasons are as follows. First of all, because GeoInd does not

Fig. 8. Data quality loss. (a) On different privacy budgets. (b) In differ-
ent utility weights.

consider the impact on data quality when it performs location
obfuscation, the data error rate after obfuscation is higher than
that of other methods. Second, becauseDUM−εe obfuscates all
the GPS points of participants, while LPMT only obfuscatse the
original GPS points sequence {px, . . . , py}, 1 ≤ x < y ≤ z that
can generate a stay point, and retains the remaining original GPS
points, LPMT has a obvious advantage in data quality loss. In
addition, compared LPMT (β = 0.5) with LPMT without LCS,
it can be found that the RMSE of LPMT can be reduced up to
20.1% after integrating LCS.

Fig. 8(b) shows the RMSE of LPPMs when we increase utility
weight β and keep a fixed ε = ln 2. As shown in Fig. 8(b), When
we increase β from 0.1 to 0.6, the RMSE of LPMT decreases
significantly. It is because that the increasing weight of LCS can
help LPMT obfuscate the locations to similar ones. After that,
the RMSE tends to keep stable when we continues to increase
β. From Figs. 7(b) and 8(b), it can be concluded that it will be
well balanced between the obfuscation quality and data quality
when the privacy budget ε is set to ln2 and the utility weight β
is set to 0.6.

VII. CONCLUSION

This article proposed a differential location privacy-
preserving mechanism named LPMT for the distributed intel-
ligence scenario. LPMT is designed based on the non-trusted
server framework. The implementation of LPMT includes three
phases as follows:

1) in the trajectory feature extraction phase, it uses a sliding
window algorithm to accelerate the extraction of stay
points;

2) in the stay points obfuscation phase, by introducing a
utility function that combines Euclidean distance and
location context similarity, it can better balance the ob-
fuscation quality and the data quality loss;

3) in the stay points generalization phase, it uses the Laplace
mechanism for GPS point sampling to meet the differen-
tial privacy constraint.

Finally, this article conducts experiments on a real-world
dataset to calculate the obfuscation qualityQ and the data quality
loss RMSE of LPMT. The experiment results showed that LPMT
can reduce the data quality loss up to 20.1% while ensuring a
comparable obfuscation quality to baselines.

Currently, LPMT is suitable for near real-time and non-real-
time MCS scenarios. We plan to research the location privacy
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protection in the real-time MCS scenarios in the future. Fur-
thermore, we will extend LPMT by combining task types and
geographic location semantics to optimize the calculation of
location context similarity, which could further reduce the data
quality loss.
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