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Abstract— Public Bike Systems (PBSs) offer the popular
service for the short distance in daily life. The battery powered
bike is an interesting and feasible method to extend the bike
trip length, which can promote the PBS service but faces the
challenges caused by the limited budget for the battery cabinet
deployment and user demand. Thus, the realistic problem is
how to deploy the cabinets near a part of public bike stations
by considering the challenges. This paper is the first to study
the novel problem, Cabinet Deployment Problem (CDP) in PBS,
based on the features extracted from the real dataset of PBS in
Hangzhou China, and proposes our strategies in the case of the
Euclidean space and Manhattan model. In the Euclidean space,
CDP can be specified as the electric-bike Set Cover problem
(e-SC), and this paper proposes a Greedy Station Coverage
algorithm (GSC). Its distributed version, called the Localized
Greedy Selection algorithm (LGS), is also presented because of
the large amount of bike stations. In many cities, the roads
have Manhattan-type directions, i.e., either east-west or south-
north. In order to close to the realistic scenario, this paper
develops a Genetic Algorithm based Cabinet Search algorithm
(GAS) to determine the locations for the cabinet deployment
in the Manhattan model. The extensive numerical experiment
is conducted for our strategies, which are compared to a
straightforward method, the Random Placement Strategy (RPS)
under the diverse parameter settings.

Index Terms— Public bike system, battery cabinet placement,
sensor network optimization, city voronoi diagram.

I. INTRODUCTION

AS A green traveling manner of short trip, the Public
Bike Systems (PBSs) have been prevailing around the

whole world, such as Hangzhou in China and Chicago in USA
because it can provide the extensive bike leasing service with
the omnipresent bike stations [1], [2]. It bridges the trip length
gap among the long-distance transport modes such as subway
and bus, and is an elegant and environment-friendly way to
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Fig. 1. The cabinet with the rechargeable e-bike battery.

solve the first-and-last mile transportation problem [3], [4].
There are numerous excellent research works on PBS includ-
ing user quantity prediction, bike trip planning and so
on [5]–[7]. One of the main research direction focuses on the
length estimation for bike trip, one key performance metric of
PBS. The statistics shows that 80% of bike trips in Hangzhou
are less than 3 km [8] while the average length of the taxi
trip is 8.86 km according to the historical data statistic of the
taxi system in Shanghai, a city quite closed to Hangzhou [9].
The primary reason causing the bike trip much shorter than
taxi is the limited human physical strength so that there is
a big gap between them [10]. Meanwhile, the public bike is
charge-free in the first rent duration, such as the first half or
one hour, and its final charge is much lower than taxis and
subway either. Therefore, it can improve the service ability of
the public transportation, and attract much more attention than
before by extending the bike trip length.

One interesting way to extend trip length is to power
the bike with rechargeable battery. For example, the PBS of
Hangzhou China is going to build the e-bike station system
by adding the rechargeable battery cabinets. Fig. 1 shows
a demonstration e-bike station in Hangzhou. Each cabinet
has thirty battery slots on average for the service of the
rechargeable battery rental and charging as shown in Fig. 1.
The PBS station equipped with the cabinet becomes an e-bike
station and can support the above service for the e-bike, which
has the battery slot under its basket. User can rent e-bike and
realize the electric-aided ridding to extend the trip length easily
by relaxing the human physical strength.

It’s quite expensive to build one cabinet near each bike
station throughout the whole PBS. For example, there are over
1700 bike stations around the whole Hangzhou city and each
cabinet costs 1 billion RMB because of the land rental and
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hardware. It also need satisfy some demands when deploying
the cabinets. 1) Cost reduction. The cabinet construction is
much expensive including the land leasing fee, its manufacture
and maintaining cost. 2) Quality of Service (QoS). User
demand for cabinet contains triple folds: convenient rent and
returning, the trip length extension and widely distributed
locations to access cabinet easily.

To satisfy the above demands, this paper condenses them
as the Cabinet Deployment Problem (CDP) that is how to
minimize the cost of cabinet deployment while meeting the
user demand, represented by QoS. Although the solution
to CDP is to select a part of bike stations to deploy the
cabinets, it cannot be directly formulated as the typical set
cover problem [11] or its applications since each station has
no clear coverage radius or area. Meanwhile, it should take the
real factors, such as traffic, road geometric character and user
behavior, into account. It needs new effort to solve the problem
since it’s a different form of the typical set cover problem.

This paper formulates the CDP as the optimization problem
and presents our cabinet deployment strategies in two sce-
narios: the Euclidean space and Manhattan-type city. In the
former, there is no geometric constraint, such as street and
building, on the bike trip while the later has such constraint
like the streets in Manhattan USA, where all of them are
along either south-north or east-west. This paper analyzes
the historical record data of Hangzhou PBS to extract some
specific features on the station coverage, and specifies the
CDP as the electric-bike Set Cover problem (e-SC) and
Position Selection problem (PSP) with the goal to minimize
the deployment cost while ensuring the QoS of placement
strategy to satisfy the user demand. This paper first selects
the candidate bike stations based on the Density based Station
Clustering algorithm (DSC), and then proposes Greedy Station
Coverage algorithm (GSC) and Distributed Greedy Selection
algorithm (LGS) to solve the e-SC and PSP to determine
the final cabinet deployment. In the Manhattan-type city, this
paper adopts the Manhattan voronoi model to estimate the QoS
so that the QoS can be more close to the real city environment
than the Euclidean space, and proposes the GAS based on the
genetic algorithm.

The main contributions of this paper are summarized as
follows:
• This paper is the first to study the realistic CDP with

the demonstration cabinet in Hangzhou as example, and
analyzes the real dataset from the PBS of Hangzhou City
to extract the features for the cabinet deployment.

• This paper studies the CDP in the Euclidean space and
Manhattan-type city. The study for the former one allows
us to illustrate the impact of the PBS features on the
cabinet deployment clearly. We transform the CDP to
the e-SC and PSP problems and propose the GSC and
LGS algorithms. In the later one, we adopt the Manhattan
model to measure the QoS more accurate than that in the
former one, and proposes the GAS based on the genetic
algorithm.

• Extensive numerical experiments are executed for the
performance comparison among our strategies under the
different metrics and settings.

TABLE I

SYMBOL AND MEANING

TABLE II

INITIALISM AND FULL NAME

A. Road Map

The rest of this paper is organized as follows: Section II
reviews the related literatures. Section III shows the models
and problem formulation. The strategy for the CDP in the
Euclidean space is presented in Section IV while that for the
Manhattan model in Section V. The numerical experiments are
conducted based on the real data in Section VI. Section VII
concludes this whole paper.

Most symbols used in this paper are summarized in Table I
and the full name corresponding to the initialisms in Table II.

II. RELATED WORKS

This section summarizes the related works in three main
topics: 1) PBS dataset analysis, 2) Electric vehicles charging
station deployment and 3) Set coverage.

A. PBS Dataset Analysis

Zhang and Mi analyzed the impacts of the public bikes on
energy utilization and carbon dioxide emissions in Shanghai
from the spatio-temporal perspective [12]. O’Mahony and
Shmoys provided a careful analysis of system utilization and
gave the novel problem formulation, which was motivated by
a close collaboration with the bike share system of New York
City [13]. Bordagaray et al. took advantage of the QoS of data
to analyze the bike usage casuistry within a sharing scheme
and proposed an original offline data mining procedure [14].
Dabiri et al. examined the problem of finding the optimal
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speed trajectory for a cyclist in signalised urban areas, and
proposed the method to minimize the total travel time, the
energy consumption and the possibility to stop at the red
light [15]. There has no research works on the rechargeable
battery cabinet deployment in PBS and the existing works
promote us to analyze the real dataset to find solution for
the CDP.

B. Electric Vehicles Charging Station Deployment

There are massive researches on the electric vehicles charg-
ing station deployment [16]–[18]. For example, Hess et al.
presented a model for electric vehicles and their battery
depletion, vehicle mobility and gave a solution for optimal
placement of charging stations. Li et al. developed a multi-
period multi-path refueling location model to capture the
dynamics in the topological structure of network and deter-
mined the cost-effective stations roll out scheme on both
spatial and temporal dimensions [17]. Mehar and Senouci
considered in several realistic constraints and proposed a math-
ematical formulation of the problem [18]. He et al. Provides
an equilibrium modeling framework that can determine the
optimal allocation among metropolitan areas to maximize
social welfare associated with the coupled networks [19]. Sina
and Babu proposes a two-stage stochastic programming model
to determine the optimal network of charging stations [20].
He and Zhou explores how to optimally locate public charging
stations for electric vehicles on a road network [21]. By the
optimized genetic algorithm, it calculated the best position to
locate them in order to satisfy the clients demand. The electric
vehicles charging station deployment has the difference with
the CDP since the bike should be returned to the station PBS.

C. Coverage Problem

The coverage problem has been widely applied and studied,
such as the sensor coverage problem in wireless sensor net-
works [22], [23]. Yadav et al. proposed a modified artificial
bee colony algorithm for the mobile sensors deployment,
with the aim of increasing the coverage area of the network
in turn improving the performance of the network [22].
Alduraibi et al. presented three novel node placement opti-
mization models for handling popular network design objec-
tives [23]. In the typical application or research of the set
coverage problem, the sensor range is modeled as a perfect
circle or an irregular area and the coverage of the selected
sensors is computed as the QoS. Different from the typical set
coverage problem, the coverage range cannot be set like above
in this paper, and is depends on the bike rental frequency,
and city geometric structure and the balance between the bike
rental and return.

From the above related works, we can find that the above
deployment strategies cannot be directly applied to the cabinet
deployment in the PBS.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section extracts the bike station features from the real
dataset, and then presents the system model and formulates
the CDP problem.

Fig. 2. Station features distribution.

A. Station Feature Extraction

This paper adopts the real dataset of the Hangzhou PBS
which contains several information items: the station ID, bike
ID, rental and returning time, recorded from April 1 to June
30 in 2016 of Hangzhou. From the rental and returning station
ID, we find that 95% bike trips lasts less than 5 km and thus
define a large cover radius γ for each station, which is enough
to cover most bike trip started from themselves. For each
single bike station vi , this paper extracts the feature, denoted
by bi (αi , βi ) from the real datasets, to depict the following
information: (1) Resource balance deviation, denoted by α,
i.e., the ratio of the available numbers of bikes to empty berths,
which reflects the ability of a bike station to support bike
rental and returning. (2) User rental frequency, denoted by β
obtained by the existing methods [24]–[26], which reflects the
actual utilization of the station.

1) Resource Balance Deviation: We define the ratio func-
tion of the bikes to berths to calculate the deviation of the
resources by the following equation.

αt
i =

⎧⎪⎨
⎪⎩

Lt
i

K t
i

if K t
i > 0,∀i ∈ V

Lm
i if K t

i = 0,∀i ∈ V

where Lt
i (K t

i ) is the number of bikes (berths) at the station
vi at time duration t and Lm

i is the maximum number of bikes
at vi . V is the set of all the bike stations.

When Lt
i = K t

i , the station vi can offer equal services for
the bike rental and returning. Otherwise, one of the two service
is higher than the other. The resource balance deviation can
measure the balance degree of the two service as the standard
deviation in the following equation:

αi =
√√√√ D∑

d=1

T∑
t=1

(αt
i − αt

i )
2/(D · T ) (1)

T is the 24 hours and divided into some equal time durations t ,
and D is the amount of all days. αt

i is the average of αt
i over

all time slots and days at vi .
2) User Rental Frequency: Through the statistics for the

real dataset of PBS, we get the user rental frequency βi of
station vi by calculating the average user rental frequency in
different days. βi is calculated by the following equation:

βi =
∑D

d=1
∑T

t=1 β t
i

D · T
According to the statistics of the dataset of Hangzhou PBS,

the user rental frequency of all bike stations ranges between
[0/day, 1102/day], and the resource balance deviation of all
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Fig. 3. Density scatter distribution of the α and β.

bike stations ranges between [0, 17]. Fig. 2 presents the Prob-
ability Mass Function (PMF) and the Cumulative Distribution
Function (CDF) of two features. The stations with α < 1 take
up at most 40% as shown in Fig. 2(a). In Fig. 2(b), the stations
with β > 200/day take up less than 48%. It’s better to select
the bike stations with the high bike rental frequency. With the
two features, we can observe that the stations with high user
rental frequency, such as β > 200/day and the low resource
balance deviation, take up about 10% as shown in the red
frame of Fig. 3. So the two features can be applied to design
the solution to the CDP.

B. System Model

Each bike station has a fixed positions denoted by vi =
(xi , yi ). Let V denote the set of all bike stations and their
positions, i.e., V = {vi = (xi , yi ), i = 1 . . . N}, where N is
the number of all the bike stations in PBS. By connecting any
pair of bike stations with a undirected edge if the distance
among them is no bigger than the pre-set radius γ . All edges
are included in the set E so the PBS can be represented
by a graph G(V , E). Each edge is assigned with a weight
measuring the distance between its two vertices. The distance
di j between any two positions vi and v j can be estimated by
two ways: Euclidean and Manhattan distances as the following
equation [27].

di j =
{ √

(xi − x j )2 + (yi − y j )2, Euclidean, (2)

|xi − x j | + |yi − y j |, Manhattan. (2′)
This paper will select out some station positions to place

cabinets. The selected position is called s-position, all of which
are included in the set P (P ⊂ V ). To place the cabinets at the
positions in P can provide users a certain QoS on the friendly
battery leasing and returning service, which is measured by
the QoS function f (·). The specific expression of the QoS
function will be given in the following context for several
different cases.

C. Problem Formulation

Some factors should be taken into account to solve the CDP,
i.e., to select the subset P from the station set V to deploy the

Fig. 4. Strategy overview.

cabinets. Firstly, the bike stations should be selected to satisfy
the required QoS, denoted by γ, based on the two features:
the bike rental frequency and the resource balance deviation.
Secondly, the deployment cost, i.e.,

∑
vi∈P δi , should be

decreased, where δi is the cost to place a cabinet at position vi .
Let θi = 1 represent that the position vi is selected to place
a cabinet and θi = 0 otherwise. Thus P contains all positions
vi with θi = 1. The goal of the CDP problem is to find the
set P = {vi ,∀θi = 1, vi ∈ V }. Therefore, the CDP problem
in this paper can be formulated as the following optimization
problem:

P1 : min
∑
vi∈V

δiθi (3)

s.t . f (P) ≥ γ, ∀P ⊂ V (4)

where f (·) is the QoS function to measure the QoS for the
s-position set P . The CDP is harder than the set cover problem,
which is proved to be NP-hard [11], [28].

IV. STRATEGY FOR EUCLIDEAN SPACE

A. Overview

This section presents our strategy for CDP in the Euclidean
space with three stages as shown in Fig. 4:
• Data pretreatment. With the dataset of Hangzhou PBS

and the graph G(V , E), this paper implements the follow-
ing two pretreatment: (1) Dataset screening. Eliminate the
isolated station under the radius γ , and obtain the stations
set V ; (2) Map matching. Match the latitude and the
longitude of each station V to those in the Mapbox [29].

• Candidate extraction. This stage clusters the stations
according to the station features tuple b(α, β), and sorts
the station positions by both the bike rental frequency and
the resource balance deviation, and selects the candidate
set M (M ⊂ V ). Section IV-B gives the extraction process
in details.

• Placement determination. After extracting the candidate
positions with the second stage, the CDP is specified as
the e-SC and the PSP respectively under the different QoS
definition in Sections IV-C and IV-D.

B. Candidate Station

Fig. 5 shows the hot map of the bike rental frequency of the
Hangzhou PBS, which has different values in different regions
with different area. This section applies the DSC algorithm to
cluster the similar regions with one group so as to extract
candidate positions in different regions throughout the city.
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Fig. 5. The distribution of the bike rental frequency in Hangzhou PBS.

1) Normalization: In the feature b(α, β), the parameter β
may reach a very large value while α’s value can be relatively
small. For example, there are three stations’ features calcu-
lated by Equation (1): b1(10, 1000/day), b2(10, 900/day) and
b3(1, 1000/day). For convenient calculation, we utilize the
0-1 normalization to leave the result in the interval [0, 1].
After normalization, the three stations features turn to b1(1, 1),
b2(1, 0.9) and b3(0.1, 1).

2) Station Clustering: After the normalization, we refer to
the spatial clustering algorithm DSC to cluster stations with
the most similar features into the same group [30]. Let the
two parameters of the station feature b be the ordinate values
respectively of a two-dimensional graph. All stations attribute
points may scatter within the graph in any spatial shape.
Compared to the other clustering methods (e.g., k-means) [31],
the DSC algorithm can find the cluster of irregular shape and
specify the number of clusters by itself instead of the quantity
given in advance and finding the circular clusters, such as the
k-means method.

The goal of the DSC algorithm is to group stations in the set
V into k clusters, where k can be determined automatically.
After all of the station features are represented as point bi (·, ·),
∀Si ∈ V with the above normalization process, define the set
B = {bi ,∀vi ∈ V } to store all points of the normalized station
features. Let Sγ

bi
denote the set of points in the neighboring

range with the radius γ centered at bi . Every point bi has a
density function ρ(bi) defined in the following equation:

ρ(bi ) = |Sγ
bi
|, ∀bi ∈ B

Let λ be a baseline to measure whether a point is a core point
or not. There are three different types of points in the set B
found by the DSC algorithm: core point, border point and
noise point. A point is a core one if its density is higher than
the threshold λ as given with Equation (5):

ρ(bi ) ≥ λ, ∀bi ∈ B (5)

All of core points are stored in the set Bc. If a point bi is not
a core point but a neighbor of the core point, i.e., Bc ∩ Sγ

bi
�=

∅,∀bi /∈ Bc, it’s called as the border point. Let Bb be the set
of all border points. If a point bi is not in either Bc or Bb,
it’s called the noise point. The example in Fig. 6(a) shows the
three kinds of points when λ = 2.

There are three concepts needed in the DSC algorithm. The
first is directly density-reachable. If b1 ∈ Bc and b2 ∈ Sγ

b1
,

we call the b2 is directly density reachable from b1. The second
concept is density-reachable. If b1, b2, . . . , bn ∈ B(n ≥ 2),
and bi+1(v = 1, 2, . . . n − 1) is directly density reachable
from bi , we call the bn is density-reachable from b1. The
last concept is density-connected. If b1, b2, b3 ∈ B , b2, b3 are
both density-reachable from b1, the b2 and b3 are defined to
be density-connected with each other.

The main idea of the DSC algorithm is to select ran-
domly a core point as the start, and continually expand to
a density-reachable area so as to obtain the maximum region
containing the core and border points. The details of the idea
is proposed by the following two steps.

• Initialization. Generate the neighborhood Sγ
bi

for each
point bi ∈ B , and k = 1. The DSC algorithm assigns
a cluster mark Ii (vi ∈ V ) for each station as follows.

Ii =
{

k(k > 0), vi ∈ kth cluster

−1, vi is a noise station
(6)

• Clustering. DSC runs iteratively in this phase. First,
it randomly chooses a point bi and judges if bi is a
core point or not by Equation (5). If bi is a core point,
its neighborhood is stored in a temporary set S and it
continues to expand the density-connected points of bi

and then marks them belong to the kth cluster. Otherwise,
bi is recorded as a noise point temporarily. bi is confirmed
as a border point if it appears in the set S under the
subsequent iteration. At last, all of the remaining stations
can be put into k + 1th clusters: c0 (noise cluster).

Our DSC algorithm is summarized in Algorithm 1.

Algorithm 1 Density-Based Stations Clustering (DSC)
Input: V , γ and λ.
Output: Clusters c1, c2, · · · ck

1: Let B ← V , and generate neighborhood for each point:
Sγ

bi
,∀bi ∈ B

2: Initialize clusters number: k ← 1; Ii ← 0,∀vi ∈ V
3: while B �= ∅ do
4: Choose bi from B; B ← B\{bi

}
; Set S ← Sγ

bi
5: if | S |< λ then
6: bi is a noise or a border: Ii ← −1
7: else
8: Put vi into the kth cluster: Ii ← k; ck = ck∪

{
vi

}
9: while S �= ∅ do

10: Select b j from S; S← S\{b j
}
; B ← B\{b j

}
;

11: if I j = 0 or− 1 then
12: Put v j into the kth cluster: I j ← k; ck = ck∪

{
v j

}
;

13: if b j is a core point then
14: S← S ∪ Sγ

b j
;

15: k ← k + 1;
16: Define the noise cluster c0 to store all of the noise points.

An example for the DSC algorithm is presented in Fig. 6
with five points b1, b2, . . . , b5 when λ = 2. The clustering ini-
tialization and results are presented in Fig. 6(a) and Fig. 6(b).
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Fig. 6. Example for DSC algorithm.

Detailed algorithm progress is showed in Fig. 6(c). We ran-
domly choose a point b1, a core point by Equation (5).
Its neighborhood b2, b3 are stored in a temporary set S.
It continues to expand the density-connected points of b1 and
then marks them belong to the 1th cluster. Iterate this process
to get the final result. The example Fig. 6(b) shows that there
are two clusters, c0 and c1. These points are grouped into
different classes and the density varies significantly between
classes. Thus, stations in the same group have the similar
features.

3) Candidate Set Determination: The bike station with the
high bike rental frequency and the low resource balance devi-
ation are much suitable to deploy cabinets. In this paper, the
rank function r(·) for each station vi is defined in Equation (7).

r(i) = log(βi )

αi
(7)

where the logarithmic value of βi is adopt to leverage the
affection of the both parameters because βi is much larger than
αi . The stations in each cluster c ∈ {c0, . . . , c|k|} are sorted
in non-increasing order according to r(·) in Equation (7). The
top ϕ (0 < ϕ ≤ 1) ranked stations are kept as the candidates
for cabinets deployment, and stored in the set M . ϕ is an
adjustable parameter. Fig. 7 shows the candidate stations with
the red dots in the map when ϕ = 0.3.

C. Solution to e-SC

This section gives the QoS definition by taking coverage
into account. The CDP is thus specified as the NP-hard e-SC

Fig. 7. Candidate positions distribution.

problem. So this paper presents the greedy algorithm GSC to
select the final s-positions P for the cabinets deployment [28].

1) QoS Definition Under e-SC : It’s quite expensive and
oversupplying to build cabinet by each bike station. An advis-
able strategy allows each user to have at least one station to
lease or return battery in their acceptable range within the
distance γ . Let Sγ

i denote the set of positions which are
covered by the cabinet position vi as the following equation:

Sγ
i = {v j : d(vi , v j ) ≤ γ, v j ∈ V }

|Sγ
i | value reflects the service ability of the position vi for the

near bike stations. So the QoS function f (·) can be specified
as the following equation:

f (P) =
∑
vi∈V

∑
v j∈P

q(vi , v j ) (8)

where q(vi , v j ) represents whether the station position vi is
covered by the cabinet position v j as the following equation:

q(vi , v j ) =
{

1 i f v j ∈ Sγ
i

0 otherwi se

When setting f (P) ≥ 1 in Equation (4), the CDP problem
can be translated into the typical set cover problem, which is
how to select a result set P from candidate positions set M
so as to satisfy that almost all bike stations can be covered by
at least one cabinet as Algorithm 2.

2) GSC Algorithm: The GSC algorithm is presented to
solve the e-SC based on the candidate selection. Its main
idea is to select the position with the maximal |Sγ

i | value
at each selection round. Suppose there are |M| candidate
sites, and the maximum number of domain sites for each
site does not exceed n. Then the time complexity of GSC
is O(|M|2 ∗ log|M|), and the space complexity is O(n|M|).

D. Solution to PSP

The PBS may cover the big city area so this section designs
distributed way, the LGS algorithm, to decide the set P of
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Algorithm 2 GSC Algorithm for e-SC
Input: The set M of candidate positions, cabinet cost

δi (∀vi ∈ M), and cover radius γ ;
Output: The set P of cabinet deployment positions.
1: Generate the set Sγ

i for each vi ∈ M
2: Initialize: P ← ∅;
3: while

⋃
Sγ

i �= V (vi ∈ P) do
4: Sort all station positions by their |Sγ

i |;
5: Find the station position v j with the maximum value of
|Sγ

j |, and set θ j = 1;
6: Remove position v j and those covered by it from the set

M;
7: Add station position v j to the set P with θ j = 1;

s-positions for cabinets placement. It’s proved that the result
achieved by LGS has the lower bound (1 − 1/e) fopt . fopt

represents the theoretical optimal QoS value.
1) QoS Definition Under PSP : This paper adopts another

QoS definition based on the Euclidean distance:
f (P) =

∑
vi∈v

log(
∑
v j∈P

q(vi , v j )) (9)

where q(vi , v j ) represents the QoS provided by the cabinet at
the position v j to the user at position vi . q(vi , v j ) is measured
by the Euclidean distance d(·) in Equation (2).

q(vi , v j ) =
{

�e−d(vi ,v j ) d(vi , v j ) ≤ γ

0 d(vi , v j ) > γ

� is a previously given constant. The over-crowded cabinet
deployment can cause the battery profligacy. So, this paper
utilizes the logarithmic function in Equation (9) to simulate
the QoS growth. The CDP becomes the PSP problem, which
is how to select a subset P of positions from M so as to ensure
the QoS satisfying the user demand γ.

2) LGS Algorithm Design: The LGS algorithm is designed
to solve the PSP effectively. According to the QoS definition
in Equation (9), we condense that the position vi has no
impact on the QoS value of the user at position v j if the
distance between them is greater than the cover radius γ .
Therefore, this paper divides the area of PBS stations into
adjacent and independent square sub-areas, denoted by R =
{R1,R2, . . . ,Rn} [32]. The set of candidate positions in the
region Ri is denoted by Mi . Then, the LGS algorithm is
executed in each region in parallel. In addition, a server is
used to collect the selected positions, to find the result set P ,
and then feedback to each region with the final set P of
s-positions. The detailed algorithm description is summarized
in Algorithms 3 and 4.

Algorithm 3 LGS Algorithm for Region Ri ∈ R
Input: Graph G(V , E);
1: Initialize the candidate set Mi for region Ri .
2: if Receive the updated set P from the server then
3: Choose position v∗ = argmaxv j∈Mi\P [ f (P

⋃{v j })].
4: Send the position v∗ to the server.

Algorithm 4 LGS Algorithm for the Server
Output: The set P of s-positions
1: Initialize result set: P ← ∅
2: while f (P) < γ do
3: Send the updated set P of s-positions to regions.
4: if Receive a selected position v∗ from a region then
5: Add position v∗ to the set P: θ∗ = 1, P ← P ∪ {v∗}.

The LGS algorithm runs distributively since each region of
the PBS in R only receives the information about the updated
set P of s-positions from the server and then chooses the
position for cabinet deployment in parallel. The LGS algorithm
consists of two sub-algorithms: the LGS algorithm for the
region Ri in Algorithm 3 and the LGS algorithm for the server
in Algorithm 4. As Algorithm 3 shows, the LGS algorithm
for the region Ri has two phases: the first is to initialize the
candidate set inside the region Ri . If the updated set P of
s-positions is received, the second is to choose the position v j

with the maximal f (P
⋃{v j }) value from candidate set Mi

and then send the position v j to the server. As Algorithm 4
shows, the LGS algorithm for the server has the following
phases. In the first phase, it generates the empty set P . In each
selection round, the server sends the updated set P to all
regions if the QoS of the set P does not satisfy the user
demand γ yet. Then, the server adds the position v∗ to the
set P if it receives a position v∗ from someone region. The
algorithm outputs the set P as the end till its QoS satisfies the
user demand γ. Suppose there are |M| candidate sites, which
are divided into |k| sub-areas to execute algorithm clients
respectively. Then the time complexity of LGS is O(|M|∗|k|),
and the space complexity is O(n|M|).

E. Theoretical Analysis

Lemma 1: Given the set P (P ⊂ M) and f (P) =∑
vi∈V log(

∑
v j∈P q(vi , v j )), f (P) is a sub-modular set

function.
Proof: According to the QoS definition in Equation (9),

we have:
f (P)+ f ({vl})
=

∑
vi∈V

log(
∑
v j∈P

q(vi , v j ))+
∑
vi∈V

log(q(vi , vl ))

=
∑
vi∈V

[log(
∑
v j∈P

q(vi , v j ))+ log(q(vi , vl ))]

≥
∑
vi∈V

log[
∑
v j∈P

q(vi , v j )+ q(vi , vl )]

≥ f (P ∪ {vl})
we easily get f (P) + f ({vl}) ≥ f (P ∪ {vl}), i.e., f (P ∪
{vl})− f (P) ≤ f ({vl}). Given the set P , f (P ∪{vl })− f (P)
is the marginal profit of the vl and has the decreasing gain
property. So, for an arbitrary subset P ′(P ′ ⊆ P), we have
f (P ∪ {vl} − P ′) ≥ f (P ∪ {vl})− f (P ′). Therefore, f (B) is
a sub-modular set function. This completes the proof. �
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Theorem 2: Let fopt be the optimal QoS value, and fgreedy

be the one achieved by greedy selection progress in Algo-
rithm 3. It thus has that fgreedy is at least (1− 1/e) fopt .

Proof: As shown in a fundamental result in
Golovin et al. work [33], f is a monotonically increasing
sub-modular function according to the lemma 1. The LGS
algorithm in Algorithms 3 and 4, which starts with the empty
set and adds the position v j with the maximal f (P ∪ {vl})
can maximally improve the QoS value in each round and
obtains a near-optimal solution, i.e., fgreedy ≥ (1 − 1/e) fopt .
This completes the proof. �

V. STRATEGY FOR MANHATTAN-TYPE CITY

In the real city, the bike trip is restricted by the street or
building, and this section proposes the cabinet deployment
strategy based on the Manhattan model.

A. City Voronoi Construction

Generalized voronoi diagram is widely used in the coverage
problem [34]. Let V = {v1, v2, . . . , vM } be the set of points
in a two-dimensional space R2. For any point vi ∈ R2,
d{vi , v j } denotes the distance from vi to v j . The distance
metric can be of the Euclidean, Manhattan, Chessboard or
another metric [35]. The dominance region of vi over v j can
be defined as:

D{vi , v j } = {vk |d{vi , vk} ≤ d{v j , vk}}
For the generator point vi , the voronoi region of vi can be
defined by:

H (vi) = {∩ j �=i D{vi , v j }} (10)

where H (vi) is the set of all points that are not closer
to any other point than vi . Subsequent voronoi regions
H (v1), H (v2), . . . , H (vM) are the partitions of the generalized
voronoi diagram H (V ). The existing algorithm constructs the
Euclidean voronoi diagram H (V ) by simulating the expansion
of wavefronts of every point starting at t = 0 as a constant
speed under the Euclidean space [36]. At time t ≥ 0 the
wavefront is the set of all points whose distance from the
source point is equal. The border is formed when the wave-
fronts of two points merge. The borders of the H (V ) partition
consist of all points that can be reached equally quickly from
at least two points. The examples of the wavefront expansion
and voronoi diagram under Euclidean metric are presented in
Fig. 8(a) and 8(b).

While the Euclidean distance offers high precision in the
free space, the Manhattan distance metrics are known to better
approximate city geography [35]. Riding distance between two
station positions vi and v j can be estimated by Manhattan
distance in Equation (2′) [27]. As shown in Fig. 9(a) and 9(b),
the city voronoi diagram H (V ) can be constructed in a similar
wavefront expansion way. Due to the different distance metric,
the dissimilarity is that the wavefront here is a square instead
of a circle.

Fig. 8. Voronoi diagram in the Euclidean space.

Fig. 9. Voronoi diagram in the Manhattan space.

Fig. 10. Binary gradient model.

B. QoS Definition Under Manhattan Space

This section defines the QoS model by considering the
factors closer to the real traffic scene. Some stations scatter in
the city and each one can be modelled as the point to expand
the wavefront in Manhattan space. For an arbitrary position vi ,
its QoS q(vi , v j ) of the station vi to any road coordinate v j

can be defined as a binary gradual change model [37] as shown
in Fig. 10. Its QoS q(vi , v j ) is defined as:

q(vi , v j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, d(vi , v j ) ≤ γ

ϕ′e1− d(vi ,v j )
γ , γ <d(vi , v j )<γ + γe

0, d(vi , v j ) ≥ γ + γe

(11)

where γe is the error radius and ϕ′ is the adjustable parameter
of between 0 to 1. d(vi , v j ) is the Manhattan distance between
vi and v j .

In addition, Fig. 11 shows the path coverage map obtained
by randomly selecting a number of users’ riding track data.
Based on the analysis of a large number of bicycle users’
historical travel data, we find that about 90% of the roads have
experienced users’ riding tracks. Notice that the bike station
is established along the roadside, and their position is the road
coordinate. Let R denote the set of all possible coordinates in
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Fig. 11. User riding path coverage map.

the grid road map. The QoS of road coordinate vi is calculated
by Equation (12).

q(P, vi ) =
∑
v j∈P

q(v j , vi ), ∀vi ∈ R (12)

C. GAS Algorithm Design

This section presents the GAS algorithm based on the
genetic algorithm, which is an artificial optimization algorithm
with a stochastic search heuristic based on the natural selection
and evaluation [38]. The genetic algorithm includes some parts
or operations: population generation, gene, fitness function,
crossover, selection and mutation.

1) Population Generation: The primary population is a
collection of individuals in the genetic algorithm, and cor-
responds to the number of candidates positions in this paper.
The set M of candidate positions is generated by the method
in Section IV-B, where the distance is measured by the
Manhattan model in Equation (2′) and the QoS function is
given in Equation (11). Based on the set M , the GAS algorithm
generates a set of first generation population. Denote the set
by F0 and the population by positive integer �1.

2) Gene: In the genetic algorithm each individual has a
unique gene, which can be represented by a binary sequence.
This paper represents each station deployment scheme with
a unique gene by the binary sequence, which has Ng bits
and Ng � |M|. Define the variable θi for each bit and its
value is 0 and 1 to represent the information quantity of two
states. θi = 1 indicates that the station vi ∈ M is selected as
the deployment cabinet, and otherwise θi = 0. For example,
suppose that there are 9 candidate stations as shown in Fig. 12.
The number in the grid represents the subscript of the variable
θi , and the colored coordinates represent that the station vi

is selected to deploy one cabinet. The cabinet deployment
scheme on the map can be represented by a 9-bit binary
sequence. As shown in the figure, the binary sequence of
deployment scheme of cabinet shown in Fig. 12 is 010101000,
and that in Fig. 12 is 000101010.

3) Fitness Function: In the selection process, the genetic
algorithm eliminates the chromosome with low adaptability
and only retains the chromosome with high adaptability. After
several generations of iterative optimization, the quality of
offspring individuals will be increased. Since the goal of
the CDP is to minimize the cost, the fitness function of
GAS algorithm is formally formulated as the overall cost in
Equation (3). The fitness of individual deployment scheme in
each generation is calculated by Equation (3).

Fig. 12. Coding scheme of GAS algorithm.

4) Crossover: With the arithmetic crossover in the genetic
algorithm, two individuals exchange a part of their genes in the
quits location so as to create two new individuals. In the GAS
algorithm, the genes in F0 are randomly paired and each pair
of genes find the random quits location in gene and exchange
their genes in the location.

5) Selection: In order to save the most adaptive individual
structure to the next generation population, the GAS algorithm
uses the best preserved selection method. Since the CDP
requires the threshold QoS, the fitness value of each individual
in F0 is calculated respectively by Equation (12). By the fitness
value, all individuals in F0 are sorted into an non-decreasing
order according to the fitness value. The individuals in the
order whose QoS satisfies the constraint (4) are reserved in
a new set F1, and delete the last half parts of individuals in
F0 and obtain an updated set F0.

6) Mutation: Mutation is an essential way to produce new
genes in nature. It changes some gene values of individuals
according to a small probability, so as to produce new indi-
viduals or new genes, which may have the great increase of
survival probability and adaptability. In the GAS algorithm,
each individual in the updated F0 randomly selects locations
to mute in its gene, and generate one new gene, which is added
into F0.

With the above procedures, the details of our is summarized
in Algorithm 5 as follows.

VI. EXPERIMENT EVALUATION

This section conducts our numerical experiment to evaluate
the performance of four algorithms: GSC, LGS, GAS and CG.
A straightforward strategy, called Random Placement Strategy
(RPS), is proposed to compare with our four algorithms.
The idea of RPS is to select a set of stations randomly as
the set of locations to deploy the cabinets, and the number
of candidate sites in the RPS algorithm can be increased.
The column generation is an efficient algorithm for solving
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Fig. 13. Performance evaluation of the GSC algorithm.

Algorithm 5 Mutation of GAS Algorithm
Input: The set V of stations, a positive constant integer �2 >

0;
Output: The set P of stations to deploy cabinets;
1: Obtain the clusters by Algorithm 1 with the distance model

in Equation (2′);
2: Obtain the set M of candidates by the method in

Section IV-B;
3: Create the first generation F0 of individuals by randomly

creating �1 binary sequences, each of which has Ng bits;
4: Define an index Index = 0 and a temporary set F2;
5: while Index ≤ �2 do
6: Crossover;
7: F2 ← F1;
8: Selection to obtain an updated F1;
9: Sort all individual in F1 and F2 into a non-decreasing

order according to their fitness values, and keep the
former half part of the order into F1;

10: Mutation;
11: Index ++;
12: Find the individual in F1 with the highest fitness value and

assign its gene to P .

large-scale linear optimization problems, and is proposed to
compare with our four algorithms [39]. Firstly, the experiment
setting are provided. After that, a series of different parameters
comparison among the GSC, LGS, GAS, CG algorithms and
the RPS are presented in Sections VI-B, VI-C and VI-D.

A. Experiment Setting

This paper applies Python to connect the database to process
the dataset collected from MySql. Python program for the
experiment is divided into three stages. Firstly, we import
the PyMySql Model and scientific computing package NumPy
to process the dataset and generate two station features [40],
[41]. Fig. 3 in the previous section is drew by python program
to illustrate the station features. Secondly, this paper imple-
ments the LGS algorithm and indicates the candidate positions
on the map as shown in Fig. 7 by the python Plotly model [42].
All the points in Fig. 7 represent the bike station positions
while the red points are the candidate positions selected by the
LGS algorithm. Stations distribution in the square of Fig. 7 are
enlarged so as to observe more clearly. Finally, we execute the

GSC or the LGS algorithm to get the s-position set P . In the
experiment, the deployment cost is the number of s-positions.

B. Evaluation for GSC Algorithm

In this experiment, the cabinet cost for each position is
set to the same (δi = δ j ,∀vi , v j ∈ M). GSC algorithm
selects 129 positions from the total 1773 positions for cabinets
placement. We analyze the performance of the GSC algorithm
in different cover radius values γ , which is compared to the
RPS algorithm.

Fig. 13(a) summarizes the trip lengths distribution of the
Hangzhou PBS. More than 80% of the trips are shorter than
3 km, which is consistent with the assumption that PBS is
troubled by “3-km curse”. The experiment is evaluated under
the cover radius ranges between [0, 5] km because almost 95%
of the bike trips are shorter than 5 km. Three parameters below
are measured to evaluate the performance under two methods.

1) Coverage Ratio: It’s the ratio of the number of the
stations covered by s-positions over the overall stations, i.e., N .
The coverage ratios of the GSC algorithm and the RPS in
different cover radius are shown in Fig. 13(b). If the cover
radius is set to 3 km, every s-position has the ability to cover
the stations within 3 km centered at itself. Some stations have
no neighbor within 1 km and these isolated stations need
to be removed. After the remove operation, only about 60%
of remaining stations can be covered by s-positions by the
RPS algorithm. The coverage ratio of the Algorithm 2 reaches
98.3% the as cover radius is set to 3 km. The increase of the
coverage ratio reaches to the bottleneck as the cover radius
ranges in [4, 5] km. When the GSC algorithm and the RPS
has the same cover radius, the coverage ratio of the GSC is
always higher than the RPS. The coverage ratio of the CG
algorithm reaches the bottleneck as cover radius is set to be
2 km, which is earlier than the GSC and RPS algorithms. But
the coverage rate of the CG algorithm is lower than that of
the GSC algorithm.

2) Deployment Cost: The cabinet deployment cost of the
GSC and the RPS under different cover radius are shown in
Fig. 13(c). We set the same deployment cost for each station in
the experiment (δi = δ j ,∀vi , v j ∈ M). Thus, the deployment
cost in the experiment is replaced by the s-positions number.
If the cover radius γ is small, we need place more cabinets and
thus have a high cost. With the GSC algorithm, the deployment
cost declines obviously, i.e., the number of selected positions
decrease from 1688 to 129, when the cover radius value
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Fig. 14. Performance evaluation of the LGS algorithm.

change from 0 km to 3 km. However, when the cover radius
is set to 4 km or 5 km, the total cost is decreased slightly.
Compared to the GSC algorithm, RPS selects the stations with
the same coverage ratio. As shown in Fig. 13(c), the RPS
would cost more than the GSC algorithm under the same γ
value. The CG algorithm costs less than the GSC algorithm
under the same γ value.

3) Joint Quality: Both coverage ratio and total deploy-
ment cost are important reference indicators that reflect the
experiment effectiveness. In order to observe the effect of
these two parameters intuitively, this section defines the joint

QoS QoS(si ) = |S
γ
i |

γ δi
to integrate these two parameters:

the coverage ratio and the deployment cost. With the GSC
algorithm, the lower deployment cost and cover radius value
result in the higher coverage ratio value. Fig. 13(d) illustrates
the joint QoS of all s-positions selected out in different cover
radius γ under the GSC, the CG and the RPS algorithms.
The simulation shows that under the same cover radius, the
CG algorithm always has better performance than others.
In addition, when the cover radius is 3 km, the GSC and the
CG algorithms has the better performance than RPS.

C. Evaluation for LGS Algorithm

This subsection sets α = 1, β = 200/400 to execute
our algorithm. The coverage ratio and deployment cost are
considered as metrics for evaluation.

1) Impact of Cover Radius: Fig. 14(a) and Fig. 14(b)
indicate that the coverage ratio and deployment cost variation
under different cover radius values. As Fig. 14(a) shows that
the coverage ratio of the CG algorithm increases from 3%
to 89.6% and the coverage ratio of the LGS algorithm is
increased from 8% to 86% under the user demand γ =
200 when the cover radius γ increases from 0 to 5 km.
In contrast, the coverage ratio of the RPS only reaches to 70%
under the user demand γ = 200. In addition, the coverage ratio
of the LGS algorithm under the user demand γ = 400 is larger
than the coverage ratio under the user demand γ = 200 and
reaches to 91% when the cover radius γ = 5. The coverage
ratio of the CG algorithm under the user demand γ = 200 is
lower than that of the LGS algorithm when the cover radius
γ = [1, 4]. As Fig. 14(b) shows that the deployment cost of
the LGS algorithm is decreased from 228 cabinets to 34 and
the deployment cost of the CG algorithm decreases from
205 cabinets to 87 under the user demand γ = 200 when
the cover radius γ increases from 0 to 5 km. In contrast, the

deployment cost of RPS is decreased to 62 cabinets under the
user demand γ = 200. In addition, the deployment cost of
the LGS algorithm under the user demand γ = 400 is larger
than the deployment cost under the user demand γ = 200 and
reaches to 104 cabinets when the cover radius γ = 5. The
deployment cost of the CG algorithm under the user demand
γ = 200 is less than that of the LGS algorithm when
γ = [0, 2.5].

2) Impact of QoS Demand: Fig. 14(c) and Fig. 14(d)
indicate the coverage ratio and the deployment cost variation
under different user demand values. As Fig. 14(c) shows
that the coverage ratio of the LGS algorithm is increased
from 68% to 97% under the cover radius γ = 3 when the
user demand γ increases from 200 to 1200. In contrast, the
coverage ratio of the RPS reaches to 82% under γ = 3.
In addition, the coverage ratio of the LGS algorithm under
γ = 5 is larger than the coverage ratio under the cover radius
γ = 3, and reaches to 100% when the user demand γ = 1200.
As Fig. 14(d) shows that the deployment cost of the LGS
algorithm is increased from 64 cabinets to 474 under the cover
radius γ = 3 when the user demand γ increases from 200 to
1200. In contrast, the deployment cost of the RPS reaches
to 529 cabinets under the cover radius γ = 3 and the user
demand γ = 1200. In addition, the deployment cost of the
LGS algorithm under the cover radius γ = 5 is lower than the
deployment cost under the cover radius γ = 3 and reaches
to 362 cabinets when the user demand γ = 1200. When
the user demand γ = 600, the coverage ratio reaches 98%
in Fig. 14(c), and the deployment cost of the CG algorithm
reaches 200 in Fig. 14(d). When γ = [600, 1200], there is a
different line from the front. It means that the user demand
cannot be satisfied by the 200 cabinets no matter how CG
selects their sites. CG requires the amount of cabinets to be
fixed in advance while RPS and LGS do not. For short, the
LGS algorithm always has a higher coverage ratio and a lower
deployment cost than the RPS under the same setup.

D. Evaluation for GAS Algorithm

This section shows the numerical experimental performance
of GAS algorithm, and compares the site deployment cost and
algorithm running time index for different QoS demand γ,
coverage radius ratio γe/γ , population size �1 and other
parameters. The deployment cost of each station is the same
(δi = δ j ,∀vi , v j ∈ M) so the number of sites can also reflect
the deployment cost.
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Fig. 15. Influence of QoS demand.

Fig. 16. Influence of coverage radius ratio.

1) QoS Demand γ: Fig. 15 shows the change of deployment
cost and running time of GAS algorithm under different
QoS demands. In Fig. 15(a), when the coverage radius ratio
γe/γ = 1.5, and population size �1 = 10 and the QoS demand
γ increases from 0 to 1000, the number of sites obtained
by GAS algorithm increases from 7 to 16 and CG algorithm
increases from 1 to 29 while that of RPS strategy increases
to about 70. In addition, when γ = 800, the curve trend
in Fig. 15(a) illustrates that the number of sites obtained by
GAS algorithm increases dramatically. CG algorithm basically
increases at the constant rate.

As shown in Fig. 15(b), when the coverage radius ratio
γe/γ = 1.5 is set and the population size is �1 = 5, and the
QoS demand γ increases from 0 to 1000, the running time of
GAS algorithm increases from 32.13 s to 143.56 s. When the
population size �1 = 10, the running time of GAS algorithm
increases from 24.24 s to 107.65 s. It can be observed that
the more the number of population is, the quicker the GAS
algorithm converges. The running time of GAS algorithm
increases sharply when γ = 1000 occurs in the Fig. 15(b).

2) Coverage Radius Ratio γe/γ : Fig. 16 shows the deploy-
ment cost and running time of GAS algorithm under different
coverage radius ratio γe/γ . As shown in Fig. 16(a), the
coverage radius ratio increases from 1.1 to 2 when the QoS
demand is set as γ = 500, �1 = 10. The number of s-positions
obtained by GAS is reduced from 20 to 11, while the number
of s-positions obtained by RPS is reduced from 79 to 22.
Two curves in Fig. 16(a) show that the deployment cost of
GAS algorithm is always significantly less than that of RPS.
When setting the γ = 500, the user demand cannot meet
the constraint of γ = 500 by CG algorithm, because the
200 candidate sites are too few. So we set γ = 200 for CG
to compare with other algorithms. Fig. 16(a) shows that the
deployment cost of the CG algorithm is gradually decreasing
when γ = 200, and is lower than the cost of the GAS algorithm

Fig. 17. Influence of population size.

when γ = 500. As shown in Fig. 16(b), under the QoS demand
γ = 500 and population size parameter �1 = 5, the coverage
radius γe/γ increases from 1 to 2, and the running time of
GAS algorithm is reduced from 120.54 s to 38.45 s. When
the population size parameter is �1 = 10, the running time of
GAS is reduced from 155.01 s to 54.43 s. When the ratio
of coverage radius reaches 1.5, the running time of GAS
algorithm is significantly reduced.

3) Population Size �1: Fig. 17 shows the change of
deployment cost and running time of GAS algorithm under
different population sizes. As shown in Fig. 17(a), when the
QoS demand is γ = 500, γe/γ = 1.5 and the population
�1 increases from 5 to 15, the number of stations obtained
by GAS algorithm floats around 12. The number of stations
obtained by GAS floats around 25 when the QoS demand is
γ = 700. The change of populations has no significant impact
on the number of s-positions generated by GAS. In addition,
Fig. 17(a) shows that the number of s-positions obtained by
GAS increases with the increase of γ parameter. As shown in
Fig. 17(b), when γ = 500 and the population sizes increases
from 5 to 15, the running time of GAS increases from 45.58 s
to 120.7 s. When γ = 1000, the running time of GAS
increases from 69.43 s to 178.34 s. In Fig. 17(b), the running
time of GAS algorithm increases linearly with the growth of
population size.

VII. CONCLUSION

Traditional PBS is characterized by the short-distance trip.
Some cities are trying to develop a new kind of cabinet by
adding battery cabinets to the existing PBS for mitigating
the pressure on the long-distance transportation modes. So we
should handle with the CDP, that is: which positions should
be selected out to place the battery cabinets so as to minimize
the deployment cost and ensure that the QoS provided by
the cabinet satisfies the user demand. In order to evaluate
the performance of GSC, LGS, CG and GAS algorithms, this
paper proposes a random deployment strategy as a comparison.
Experiments show that the algorithm used in this paper is
better than the random deployment strategy.
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